Absstract of: CN120878876A
本发明提供了一种带微3D流场的气体传输双极板和质子交换膜燃料电池,涉及电化学储能技术领域。所述带微3D流场的气体传输双极板包括阴极极板、阳极极板和多孔传输板,所述多孔传输板设置在阴极极板一侧或分别设置在阴极极板和阳极极板一侧。本发明设置多孔传输板,在气体流经流场时,其网孔结构可引起气体扰动,使经过扩散层的气体流动状态再分配形成微3D流动,提高传质效果;多孔传输板位于阴阳极极板和膜电极之间,与气体扩散层直接接触,可保证扩散层均匀压缩,有利于气体扩散层结构和水气传输稳定性。本发明所述双极板具有低传质阻力、高传输均匀性和高气体传输性,阴阳极极板槽脊相对位置可不对齐,并可根据需要进行阴阳极差异化设计。
Absstract of: CN120878868A
本发明公开了一种钴掺杂铂固溶体阳极催化剂的合成方法和应用,属于阳极催化剂技术领域。该催化剂的制备方法包括将铂前驱体与钴前驱体按设定比例溶解于N,N‑二甲基甲酰胺中,加入碳纳米片,在氮气保护下施加一定气体压力,并于温度为120~180℃下反应;随后冷却作为载体,密封、离心、洗涤并真空干燥,获得催化剂。本发明不仅在高压条件下避免了颗粒失控与掺杂不均的弊端,而且成功实现了PtxCoy(0.90≤x≤0.99、0.01≤y≤0.10,x+y=1)纳米固溶体的稳定构建,所得催化剂粒径控制在2~10nm之间,比表面积达40~120m2/g,展现出优异的结构分散性和合金均一性。
Absstract of: CN223501895U
本实用新型涉及一种钒电解液储罐及液流电池。钒电解液储罐包括罐体、主管管路及多个直管管路。在液流电池使用过程中,钒电解液经过电堆装置放电或充电后,在回流泵提供的动力作用下经进液口流入主管管路内,而主管管路内的钒电解液分流至多个支管管路内,每个支管管路内的钒电解液再经多个第一混流喷嘴喷入罐体内,实现钒电解液的回流。如此,在钒电解液回流的过程中,通过先将钒电解液分流成多股,再将每股钒电解液以喷射的方式送入罐体内,从而在罐体内形成多个涌动的混合区域,从而达到在钒电解液回流的同时充分混匀高阶钒液和低阶钒液的目的。
Absstract of: CN223501891U
本实用新型公开一种燃料电池的集流板组件、电堆及燃料电池系统。所述燃料电池的集流板组件包括集流板和密封圈,所述集流板具有相对的两个板面,以及贯穿所述两个板面的流体通孔,所述密封圈套设在所述流体通孔内以包覆所述流体通孔的内侧壁面,其中,所述集流板的至少一个板面上开设有与所述流体通孔连通的安装凹槽,所述密封圈包括安装于所述安装凹槽中的安装部,所述安装部上设置有凸伸出所述安装凹槽所在板面的凸起,所述凸起围绕所述流体通孔一周以能够被挤压变形以进行密封。本实用新型公开的燃料电池的集流板组件、电堆及燃料电池系统,结构简单,具有高效的电流传输效率,并隔绝流体介质提高其绝缘及耐腐蚀性。
Absstract of: CN223501893U
本实用新型提供了一种封装结构,其用于设置在燃料电池电堆的双极板之间;封装结构包括催化剂涂层膜、封装边框、封装件和连接件,封装边框固定设置在催化剂涂层膜的一个表面;封装边框的边缘延伸至催化剂涂层膜的外侧;连接件的外端与封装件连接,连接件的内端与封装边框连接。在通过注胶以形成封装件的过程中,可以避免催化剂涂层膜进入注胶模具中,即只需将连接件放置在注胶模具中,催化剂涂层膜不需要一起放入注胶模具,进而避免注胶模具的注胶环境对催化剂涂层膜造成影响。
Absstract of: CN223501898U
本实用新型涉及燃料电池技术领域,具体提供了一种尾排装置及燃料电池系统。本实用新型的尾排装置包括主管路,以及设于主管路上用于连通电堆的阳极尾排入口和阴极尾排入口;主管路上还设有用于分别连通电堆的空压机排气管路、电堆吹扫出气管路、排氮泄压管路和排水管路的第一接口、第二接口、第三接口和第四接口,且第二接口、第三接口和第四接口均连通有位于主管路内部的导流管,各导流管的排出口均朝向主管路的排气方向设置。本实用新型的尾排装置,为各连通接口配置导流管,并将各个导流管端部的排出口均朝向主管路的排气方向设置,氢气更容易顺畅的沿着主管路的排气方向排至大气中,从而可改善尾排装置中的氢气倒灌回电堆的情况。
Absstract of: NZ753136A
The invention is directed to a method of focussing charge density (voltage or current) at a functional surface on an electrode array, the method comprising the steps of: a. providing an electrode array comprising: i. a support substrate; ii. at least one surface structure protruding from an upper surface of the support substrate wherein the surface structure includes an electrode layer; iii. a functional surface on the electrode layer, wherein the functional surface is on an upper portion of the at least one surface structure and wherein the functional surface is adapted to contact an active species in a conductive solution; b. exposing the surface structure to the conductive solution comprising an active species, in which a counter electrode is positioned; and c. establishing a current or voltage between the functional surface on the electrode layer and the counter electrode such that the charge density is focussed at the functional surface on the electrode layer. The invention is also directed to electrode arrays that may be used in that method.
Absstract of: CN223490701U
本实用新型公开了一种具有高效除杂功能的氢电池氢气回收装置,属于氢电池氢气回收技术领域,包括除杂罐,所述除杂罐的内壁转动连接有转轴,所述除杂罐的内壁上端固定连接有滤板,清理机构,所述清理机构包括转动连接于转轴表面的长杆,所述长杆的内壁滑动连接有环形分布的清理板,所述清理板的端部固定连接有等列分布的毛刷,所述转轴的表面固定连接有固定框;通过转轴、长杆、第一齿轮、连接环与三角块,实现了长杆带动多组毛刷在环形中移动中并转动的对滤板进行刮扫,转动中的毛刷降低了杂质粘附其上的面积,其中一组毛刷转动接触到拨动板处,会产生形变,使附着的杂质因形变而抖落,保证了毛刷表面的整洁性,相较于现有毛刷上的杂质在清理中会再次附在过滤板处,本方式实现了对毛刷的自动清理,避免毛刷上的杂质再次附在滤板处,保证了对滤板的清理效果。
Absstract of: CN223501892U
本实用新型涉及特种电池领域,公开了一种特种电池液流比例用分配板及其成型模具,其中一种特种电池液流比例用分配板,包括:分配板本体;分配槽,开设于所述分配板本体的顶部;第一凸起块,安装在所述分配槽的底壁上,用于分隔分配槽,以形成流道结构;第一通孔,开设于所述分配槽的底壁上。本实用新型中,通过成型模具的优化设计,保证了冷模铺料的要求,具有更好的质量稳定性和产品性价比,通过直接采用成型模具,将分配板本体与其他部件一次性成型,简化了工艺流程,确保了分配板的精度和稳定性,提高了电池液流比例分配的精确性和电池性能的一致性,分配板满足作为特种电池隔膜材料的高耐腐性和高耐电压等级要求。
Absstract of: CN223499337U
本实用新型涉及一种氢燃料电池电堆测试台用的压缩空气供应系统,包括通过管道依次连接的空气压缩机、缓冲罐和干燥机,缓冲罐和干燥机之间的管道上设有一级过滤器,干燥机和用气端之间的管道上设有串联的二级过滤器和三级过滤器,一级过滤器和二级过滤器之间设有旁路管道,旁路管道上设有稳压保护阀,旁路管道内的压力超过设定的上限值时,稳压保护阀开启泄压,超过设定的下限值时,稳压保护阀关闭。利用稳压保护阀的动作,在小流量用气时人为的增大系统的气体泄放量,使空气压缩机维持在相对更加稳定的运行状态,使得缓冲罐的需求体积变得更小,不再需要大容量的缓冲罐,能够间接的减少撬装站的重量和空间占用,避免可能的安全隐患。
Absstract of: CN223501900U
本实用新型公开了一种MEA贴合装置,包括底座,其特征是:底座上设置有贴合装置,贴合装置包括固定台、活动台、吸附孔、转动架和活动架,固定台安装在转动架上,活动台设置在固定台上方,转动架设置在底座上方,吸附孔开设在固定台和活动台上,固定台和活动台一侧连接设有调节装置,调节装置包括旋转套、固定管、流通管、流通孔、封堵杆、硬管、适配套和适配杆,流通管设置在固定管内,多个流通孔开设在流通管侧壁,封堵杆设置在流通管中,适配套设置在旋转套内侧,适配杆连接在封堵杆一端,固定管外侧设置有定位机构,本实用新型显著提高了MEA生产的自动化水平、精确度和稳定性,简化了操作流程,增强了产品质量的一致性。
Absstract of: KR20250155304A
본 발명의 일 실시 예는, 크롬을 포함하는 스테인리스강 소재로 이루어지는 고체산화물 연료전지 부재; 및 상기 크롬의 휘발을 억제하기 위해 상기 고체산화물 연료전지 부재의 표면에 코팅되는 니켈도금층;을 포함하며, 상기 고체산화물 연료전지 부재의 브레이징 시 상기 니켈도금층은 적어도 일부가 용융되는 것을 특징으로 하는, 고체산화물 연료전지 시스템을 제공한다.
Absstract of: KR20250155089A
본 발명은 단원자-나노입자 복합체, 그의 제조방법, 그를 포함하는 연료전지와 수전해 장치에 관한 것으로서, 본 발명의 일 실시예에 따른 단원자-나노입자 복합체는, 탄소 지지체; 및 상기 탄소 지지체 표면에 코팅된 흡착층;을 포함하고, 상기 흡착층은 단원자 금속 이온, 산성 물질, 고분자 및 질소가 결합된 것이다.
Absstract of: KR20250155299A
상기한 바와 같은 종래의 문제점을 해결하기 위한 본 발명의 목적은, 공기불요추진(Air independent propulsion, AIP) 시스템을 구비하는 수중무기체계에 적용되는 연료전지 시스템의 구동시간 동안 밀폐된 공간에 안정한 형태로 잔류가스가 저장되어 시스템의 기밀성을 유지할 수 있는 연료전지의 수소 및 산소 함유 잔류가스 압축처리 시스템을 제공하는 것이다. 상기 목적을 달성하기 위해, 본 발명에 따른 밀폐형 연료전지의 수소 및 산소 함유 잔류가스 압축처리 시스템은, 공기불요추진(Air independent propulsion, AIP) 시스템을 구비하는 수중무기체계에 있어서, 연료전지 스택; 상기 연료전지 스택으로부터 배출되는 산소 및 수소를 포함하는 잔류가스를 승압시켜 압축시키는 가스 압축부; 및 가스 압축부에서 압축되어 승압된 상기 잔류가스를 저장하는 고압탱크부를 포함하는 것을 특징으로 한다.
Absstract of: KR20250155353A
본 발명의 실시예에 따른 연료 전지는, 전기화학 반응을 통해 전력을 생성하고, 서로 스택되어 형성되는 복수의 셀 조립체 및 상기 복수의 셀 조립체를 서로 연결시키는 연결부를 포함하고, 상기 셀 조립체는, 케이스, 상기 케이스의 내측에 위치하고, 관통 형성된 매니폴드부를 형성하여 상기 매니폴드부로 유입된 냉각수 또는 반응 유체 중 적어도 하나를 유동시키는 복수의 분리판 및 상기 복수의 분리판 사이에 배치되는 복수의 막-전극접합체(MEA)를 포함하는 전지셀 및 상기 케이스에 관통되고 상기 분리판의 일 측을 지지하여 상기 전지셀을 상기 케이스 내부에 체결시키는 체결부를 포함하고, 상기 분리판은 일 측이 함몰 형성되어 상기 체결부에 의해 지지되는 지지 부분을 포함할 수 있다.
Absstract of: WO2025225918A1
Disclosed is an electrochemical reaction system without an electrical contact between a stack and a manifold. The system may comprise: an insulating manifold including at least a plate-shaped base manifold part, through which a first fluid conduit and a second fluid conduit pass from top to bottom, and a housing part, which has a downwardly open cross-section and can be fastened to the upper surface and lower edge of the base manifold, the insulating manifold further including insulating plates located on the upper surface and lower surface, respectively, of an inner space surrounded by the base manifold part and the housing part; and a stack which is accommodated between the insulating plates in the inner space so as not to cover at least one of the first fluid conduit or the second fluid conduit, and in which at least a plurality of plate electrodes and separating plates separating the plurality of plate electrodes are stacked, wherein sealing materials are stacked above and below the stack.
Absstract of: JP2025164507A
【課題】本開示は、電気化学単セルに達する前に生じた吸熱反応による温度低下がある場合でも、供給されるガスを所望の温度まで予熱できる電気化学セルスタックを提供する。【解決手段】本開示に係る電気化学セルスタック101は、第1電極、固体電解質膜、第2電極が順に積層されてなる電気化学単セル105を有する反応部10よりも原料ガス供給口11側で、原料ガスと、第2電極側に供給された酸化性ガスと、が熱交換する原料ガス入口熱交換部13と、反応部10よりも生成ガス排出口12側で、生成ガスと、第2電極側に供給された酸化性ガスと、が熱交換する生成ガス出口熱交換部14と、を備え、原料ガス入口熱交換部13の伝熱部面積が、生成ガス出口熱交換部14の伝熱部面積と同じか、または生成ガス出口熱交換部14の伝熱部面積よりも大きい。【選択図】図1
Absstract of: CN120187896A
The invention relates to a three-chamber cell capable of forming a three-chamber cell stack having three-chamber cells connected in series, in which the three-chamber cell comprises a gas diffusion electrode (1), a flow plate (2), a flow frame (3), at least one electrically conductive seal (4, 5), an anode (6) and a membrane (7), in which the electrically conductive seal (4, 5) is located on either side of the gas diffusion electrode (1), wherein both sides of the seal (4, 5) are in electrically conductive contact with each other and the seal (4, 5) bears against one side of the flow plate (2), and wherein on the opposite side of the flow plate (2) there is an abutment point for the anode (6) of a subsequent three-chamber cell and wherein the abutment point is in electrically conductive contact with the seal (4, 5) via the flow plate (2).
Absstract of: WO2025227130A1
The present disclosure provides systems and methods for processing ammonia (NH3). A heater may heat reformers and NH3 reforming catalysts therein. NH3 may be directed to the reformers from storage tanks, and the NH3 may be decomposed or cracked to generate a reformate stream comprising hydrogen (H2) and nitrogen (N2). At least part of the reformate stream may be burned in combustors to heat the reformers. Before the reformate stream is burned in the combustors, a mixture of hydrogen and nitrogen may be used as a heat transfer gas to heat up the reformers. An exhaust valve may be used to vent part of the reformate stream or heat transfer gas before directing at least part of the reformate stream to a fuel cell, thereby preventing the overheating of the combustors or reformers.
Absstract of: WO2025225918A1
Disclosed is an electrochemical reaction system without an electrical contact between a stack and a manifold. The system may comprise: an insulating manifold including at least a plate-shaped base manifold part, through which a first fluid conduit and a second fluid conduit pass from top to bottom, and a housing part, which has a downwardly open cross-section and can be fastened to the upper surface and lower edge of the base manifold, the insulating manifold further including insulating plates located on the upper surface and lower surface, respectively, of an inner space surrounded by the base manifold part and the housing part; and a stack which is accommodated between the insulating plates in the inner space so as not to cover at least one of the first fluid conduit or the second fluid conduit, and in which at least a plurality of plate electrodes and separating plates separating the plurality of plate electrodes are stacked, wherein sealing materials are stacked above and below the stack.
Absstract of: WO2025226468A1
A solid oxide electrochemical cell includes a fuel side electrode, an air side electrode, and an electrolyte disposed between the fuel side electrode and the air side electrode. The electrochemical cell can be an electrolyzer cell, a fuel cell, or a regenerative fuel cell. The electrolyte includes an electrolyte material formed of zirconia doped with Sc2O3 and at least one additional rare earth oxide dopant. The electrolyte material includes less than 0.1 atomic % CeO2.
Absstract of: WO2025225400A1
The present invention accurately measures a current flowing through a measurement object even when the measurement object and a non-measurement object are connected in parallel via a connection line, and a large direct current is flowing through the connection line. Current sensors 4 measure current values I1 to I3 of alternating current Im for measurement and measure a current value Ip of the alternating current Im for measurement that is supplied to a power supply device PD. A processing unit 5 calculates, as a supply current value for a measurement object DUT 1, a current value by dividing the current value I1 by a summed current value of the current values I1 to I3 and the current value Ip, and multiplying the thus obtained quotient by a current value Io of the alternating current Im for measurement measured by a current sensor 4-m.
Absstract of: WO2025225212A1
In the present invention, a control device switches, on the basis of a charging rate of a power storage device, the target generated power of a fuel cell to any one of generated power candidates including first power and second power lower than the first power. The control device updates the value of the first power or the second power as triggered by the switching of the target generated power between the first power and the second power.
Absstract of: WO2025225186A1
An electrochemical cell (1) has a fuel electrode layer (2), a solid electrolyte layer (3), and an air electrode layer (4) in this order. An electrolyte body layer (31) of the solid electrolyte layer (3) has a fluorite structure and is constituted of a composite electrolyte material that contains an M-containing oxide containing at least one element M selected from the group consisting of Zn, Mg, Ca, Sr, La, and Y, in a solid electrolyte material represented by Ce1-x(RE)xO2-x/2 (where 0.05 ≤ x ≤ 0.2 and the element RE is Gd and/or Sm). The average oxygen coordination number NAVE according to the formula 4 × (2-x/2) and the oxygen coordination number NCe around Ce and the oxygen coordination number NRE around the element RE, as determined by EXAFS spectral analysis, satisfy 0 < NAVE-(NCe + NRE)/2 in the composite electrolyte material.
Nº publicación: WO2025225185A1 30/10/2025
Applicant:
DENSO CORP [JP]
\u682A\u5F0F\u4F1A\u793E\u30C7\u30F3\u30BD\u30FC
Absstract of: WO2025225185A1
This electrochemical cell (1) has, in the following order, a fuel electrode layer (2) that is an electrode to which a fuel is supplied, a solid electrolyte layer (3) that has oxygen ion conductivity, and an air electrode layer (4) that is an electrode which is paired with the fuel electrode layer (2). The solid electrolyte layer (3) has an electrolyte main body layer (31) that is in contact with the fuel electrode layer (2). The electrolyte main body layer (31) has a fluorite structure, and has a composite oxide phase that comprises a first crystal phase represented by Ce1-x(RE)xO2-x/2 (wherein x is 0.05 to 0.2 inclusive, and RE element is at least one of Gd and Sm) and a second crystal phase represented by (ZnO)(CeO2-δ)y (wherein δ > 0 and y is 0.15 to 0.7 inclusive).