Absstract of: EP4613890A1
Disclosed herein is a titanium plate with excellent surface conductivity and excellent durability. The titanium plate for a fuel cell separator according to the present disclosure includes: a titanium (Ti) base material including, in mass%, Si: 0.001 to 0.09%, a remainder Ti, and inevitable impurities; and a surface coating layer in which a content of each of Ti, Si, and O exceeds 0% when measured by angle-resolved X-ray photoelectron spectroscopy using an Al-Kα X-ray source under a condition where a photoelectron takeoff angle is 45°.The surface coating layer satisfies a following formula (1): 0.2≤Siat.%/Tiat.%+Siat.%≤0.8
Absstract of: WO2024097986A2
Disclosed herein are devices, systems, and methods of using aluminum, activated with a liquid metal catalyst stored inside of one or multiple shipping containers or shipping container-like boxes to produce hydrogen and direct heat on demand.
Absstract of: EP4614633A1
The present disclosure relates to a poly(aryl piperidinium) copolymer ionomer which is grafted with a propargyl group, contains a piperidinium group, and does not have any aryl ether bond in the polymer backbone; an anion-exchange membrane cross-linked therefrom, and a method for preparing the same. The poly(aryl piperidinium) copolymer ionomer grafted with the propargyl group has excellent chemical and thermal stability, ionic conductivity, mechanical properties, dimensional stability, and durability. In addition, the cross-linked anion-exchange membrane prepared therefrom is greatly improved in the peel strength of the catalyst layer, thus promoting the interaction between the ionomer and the membrane and stabilizing the catalyst layer to remarkably improve the durability of a fuel cell.
Absstract of: EP4614630A1
An electrochemical apparatus (100), an electric device (200), and a manufacturing method for the electrochemical apparatus (100). In the electrochemical apparatus (100), N battery cells are divided into M battery cell groups (10), battery cells (1) in each battery cell group (10) are arranged in a first direction, and the M battery cell groups (10) are arranged in the first direction; each battery cell (1) comprises a battery cell housing (11) and two electrode terminals (12); in the first direction, electrode terminals (12) of two adjacent battery cell groups (10) are connected by means of conductive members (24), and connection areas (25) are formed on the conductive members (24); in a second direction, each battery cell group (10) comprises a first side and a second side arranged opposite to each other; a first fixing member (21) is bonded to at least part of an electrode terminal (12) on the first side of the battery cell group (10), and at least one first fixing member (21) is bonded to at least part of a connection area (25); and/or a second fixing member (22) is bonded to at least part of an electrode terminal (12) on the second side of the battery cell group (10), and at least one second fixing member (22) is bonded to at least part of a connection area (25).
Absstract of: EP4614753A1
A method for operating a power system in the present disclosure includes the steps of planning an output of a fuel cell system in a second period, which is later than a first period, in such a way as to make up differences between actual values of power demand and actual values of an output of a solar power generation system in the first period, causing, if a sum of the output of the solar power generation system and the output of the fuel cell system is larger than the power demand while the fuel cell system is generating power in the second period with the planned output, the storage battery system to store power, and causing, if the sum of the output of the solar power generation system and the output of the fuel cell system is smaller than the power demand while the fuel cell system is generating power in the second period with the planned output, the storage battery system to discharge power in such a way as to meet the power demand. The first period is a period immediately before the second period. The second period is longer than the first period and the planned output of the fuel cell system is constant throughout the second period.
Absstract of: EP4614755A1
A method for operating a power system in the present disclosure includes the step of planning an output of a fuel cell system in such a way as to make up a difference between power demand and an output of a solar power generation system. In the step, if a charge level of a storage battery system is higher than or equal to an upper limit value smaller than 100%, first correction, in which the plan is corrected in such a way as to reduce the output of the fuel cell system, is performed and/or if the charge level of the storage battery system is lower than or equal to a lower limit value larger than 0%, second correction, in which the plan is corrected in such a way as to increase the output of the fuel cell system, is performed.
Absstract of: EP4614632A1
The present invention relates to an electrolyte composition improved with deep eutectic-solvents-based, for activation of an energy harvester or energy storage device.
Absstract of: EP4614628A1
The invention concerns a method for making an anode catalyst layer for a polymer electrolyte membrane fuel cell, comprising:- preparing a powder composition by mixing (a) catalyst particles of carbon-supported platinum or carbon-supported platinum alloy, said catalyst particles having a platinum mass percentage of at least 30%, with (b) filler particles of bare carbon black, wherein a mass percentage of platinum in the powder composition lies in the range 10% to 50%, and wherein a total mass percentage of carbon in the powder composition lies in the range 50% to 90%,- preparing a suspension by mixing the powder composition with a liquid medium,- depositing the suspension on a substrate, and- drying the thus deposited suspension to obtain the anode catalyst layer.
Absstract of: EP4614036A1
Die vorliegende Erfindung betrifft eine Ventilvorrichtung (10), beispielsweise für eine Wasserstoffstrahlpumpenvorrichtung in einer Brennstoffzellenanwendung, die einen Hauptkanal (MC) und mindestens einen Bypasskanal (BC) innerhalb eines Ventilkörpers (VB), einen Stößel (TP), und eine Feder (SP), die an einem Ende des Stößels (TP) angeordnet ist, umfasst.
Absstract of: EP4613998A1
Verteiler (110) für ein H2-Hochdrucksystem (100), wobei der Verteiler (110) einen Hauptkörper (120) mit einer Anzahl von radialen Schnittstellen (124) zum Verbinden des Verteilers (110) mit einer Betankungsinfrastruktur (150) und/oder dem H2-Hochdrucksystem (100) umfasst, wobei die mehreren Schnittstellen (124) miteinander verbunden sind, um Fluid über eine Hauptbohrung (125) entlang des Hauptkörpers (120) zu verteilen, wobei mindestens eine der mehreren radialen Schnittstellen (124) ein Verbindungselement (126) zum Verbinden der betreffenden radialen Schnittstelle (124) mit einer Betankungsinfrastruktur (150) und/oder dem H2-Hochdrucksystem (100) umfasst, wobei das mindestens eine Verbindungselement (126) ein Außengewinde (128) und ein Ausdehnungselement (130), um zu ermöglichen, dass sich das Verbindungselement (126) radial ausdehnt, umfasst.
Absstract of: EP4614634A1
The invention relates to a new electrolyte involving iron salts to be used as anolyte and/or catholyte in an all-iron hybrid redox flow battery. Said electrolyte, as well as iron salts in high concentration, comprises various additives that grant key properties such as stability, balanced pH, and ionic conductivity (needed to avoid salt precipitation), and also inhibit H<sub>2</sub> evolution/generation thus enabling good quality iron platting.Therefore, the field of the invention is the iron redox flow battery industry.
Absstract of: CN120226172A
The present invention relates to a method of operating a battery stack of battery cells, each battery cell in the battery stack comprising: a battery layer comprising an electrochemically active battery region, the battery layer having a first side and a second side; a separator plate electrically connected to the battery layer, the separator plate having a first side and a second side, the second side of the separator plate extending through and facing the first side of the battery layer in a spaced arrangement to form a first fluid volume, and the first side of the separator plate comprising a protrusion, the protrusion is directed away from a first side of the battery layer and toward a second side of the battery layer adjacent a battery cell to form a second fluid volume, the method comprising: providing a first fluid to the first fluid volume; providing a second fluid to the second fluid volume; and adjusting a pressure difference between the first fluid volume and the second fluid volume to maintain a spaced arrangement forming the first fluid volume.
Absstract of: CN119968949A
The present invention provides an electrical device comprising: at least a first component and a second component, and an interface between the first component and the second component wherein the device further comprises: (a) a ta-C coating at the interface for sealing the interface to prevent entry and/or escape of fluid, or (b) a gasket at the interface for sealing the interface to prevent entry and/or escape of fluid, wherein the gasket comprises a ta-C coating for sealing the interface to prevent entry and/or escape of fluid. A method of manufacturing an electrical device is also provided.
Absstract of: WO2024095010A1
A method of operating a fuel cell, wherein the fuel cell comprises an anode, a cathode and a proton conducting solid oxide electrolyte arranged between the anode and the cathode, and the method comprises feeding a fuel to the fuel cell, wherein the fuel comprises methanol or ammonia. Also described is a fuel cell comprising an anode, a cathode and a solid oxide electrolyte, wherein the solid oxide electrolyte comprises BaCe0.7Zr0.1Y0.16Zn0.04 (BCZYZ), and wherein the solid oxide electrolyte is arranged between the anode and the cathode; a method of manufacturing said fuel cell and a system comprising said fuel cell.
Absstract of: CN120077079A
The description relates to fluorinated polyaromatic polymer comprising at least one fluorinated unit of formula I FU # imgabs 0 # and at least one cationic unit of formula B or C CU # imgabs 1 #
Absstract of: JP2025132028A
【課題】電力系統システムにおいて、蓄電池によるエネルギー需給制御ができなくなる過放電や過充電を抑制する。【解決手段】DCバス5に第1電力変換器DC/DC1を介して自然エネルギー発電装置2が接続される。また、DCバス5に第2電力変換器DC/DC2を介して蓄電部3が接続される。さらに、蓄電部3に対して充放電を行う水素システムが設けられる。水素システムは、電力を水素に分解する水電解装置ECと、水素を蓄える水素タンク4と、水素を電力に変換する燃料電池FCと、を有する。水素システムを制御する電力補償器は、所定期間の開始時と終了時の前記蓄電池のSOCを目標値付近に維持するように、次の所定期間における前記水素システムの充放電量を決定する。【選択図】図8
Absstract of: CN223321287U
本实用新型公开了一种氢能电池前端散热模块布置结构,涉及氢能电池技术领域。本实用新型包括壳体,所述壳体的侧面固定连接有过滤板,所述壳体的侧面固定连接有散热翅片,所述壳体的底部铰接有密封板,还包括布置散热装置、除湿装置和导向装置;其中,布置散热装置设置在密封板的顶部上,所述布置散热装置包括散热扇。本实用新型通过布置散热装置的设置,使得散热扇、导热板、连接杆、凸形杆、半圆块、连接长板、连接长杆、弹簧一配合使得对流动的热空气进行散热的操作,避免了出现了局部高温的现象,有助于提高电池的充放电效率,确保电池能够提供稳定的功率输出,避免因过热而导致电池性能下降、寿命缩短甚至损坏。
Absstract of: AU2023387783A1
Embodiments described herein include systems and methods for managing electrical power among various energy generation, storage, and consumption systems, including micro-grids or nano-grids. Computing systems and electrical hardware send and receive electrical power, to or from various energy storage, transfer, and consumption sites, particularly where certain nano-grids are not electrically wired to the energy generation and storage subsystems. A grid adapter receives energy from various sources, reduces noise in the electrical waveform (e.g., harmonics), and determines an amount of power to deliver to nano-grids via electrical connections or delivery vehicles to achieve acceptable operation according to grid codes or other operational configurations. A storage system may include a flow battery that exchanges electricity, based on required power or surplus power, with delivery vehicles according to an electrolyte swap for the flow battery.
Absstract of: CN223321295U
本实用新型涉及液流电池技术领域,且公开了一种新型高效防漏型全钒液流电池和电堆结构,包括阳极杆,所述阳极杆的表面设置有阳极密封胶,所述阳极密封胶的底端粘有阳极三通,所述阳极三通的右侧固定连接有阳极电解液排出管,所述阳极三通的底部设置有O型环,所述O型环的表面设置有密封扣,所述阳极三通底端的外表面固定套装有阴极外框,所述阴极外框的内腔固定套装有阴极杆,所述阴极杆的上下两端均设置有阴极密封胶,所述阴极外框的左侧固定连接有阴极电解液排出管;从而可以不依靠螺栓的高强度压紧,并且通过阳极密封胶、阴极密封胶、密封扣的多重密封,实现了正、负极电解液完全隔离,防止了电池电堆的内漏和外漏。
Absstract of: CN223321288U
本实用新型公开一种燃料电池氢气温湿检测装置,包括主体组件,所述主体组件包括本体;移动组件,所述移动组件包括开设在所述本体侧壁的滑槽、卡入至所述滑槽内的滑块、与所述滑块连接的连接块、与所述连接块贴合的连接板;所述连接块位于滑块的外侧面,所述滑块沿着所述滑槽内竖直运动,并且所述滑块带动所述连接块、连接板竖直移动;所述连接板与连接块的紧贴处活动连接有活动轴,连接板一侧固定连接有一组弹簧;防护组件。本实用新型通过设置防护组件,在检测装置完全暴露在外界时,防护组件内的竖板与防护板可对装置正面进行保护,同时防护板前后侧均开设有一组防护孔,在防护板对装置进行保护时,检测装置也可通过防护孔对外界的氢气进行检测。
Absstract of: CN223321297U
本实用新型涉及燃料电池自动化生产技术领域,公开了一种燃料电池电堆堆芯限滑装置,包括:上端板、下端板、绑带、下集流板、上集流板以及极板组件;上端板、下集流板、极板组件、上集流板及下端板沿第一方向依次叠放,上端板在第二方向上的两侧分别设有朝下端板凸出的上限位组件,且上集流板以及部分极板组件位于两上限位组件之间;下端板在第二方向上的两侧分别设有朝向上端板凸出的下限位组件,且下集流板以及部分极板组件位于两下限位组件之间,下限位组件与下端板为一体件;绑带周向绑扎于上端板、上集流板、极板组件、下集流板以及下端板的外侧。本实用新型设置上、下限位组件与上下端板一体注塑成型,成本低,结构简单有效。
Absstract of: CN223321286U
本实用新型涉及液流电池领域,尤其涉及一种液流电池用复合石墨双极板,包括石墨双极板主体,石墨双极板主体由阴极板、阳极板、液体导流板组成,阴极板与阳极板分别对称贴合设置在液体导流板的两侧表面处,通过将液流电池用的复合石墨双极板设计成由阴极板、阳极板、液体导流板组成的石墨双极板主体,在电解液流经时,设置的第一流道、第二流道、第三流道可以有效的增加电解液的流程,并且通过中的液体导流板与两侧的阴极板和阳极板叠加时产生的空隙将流程延长,这样使得石墨双极板主体在流通电解液时可以更加的稳定。
Absstract of: CN223321289U
本实用新型涉及一种基于MQTT的燃料电池安全控制系统。本申请燃料电池堆的氢气进气口可选择的接通氢气供气管路或抑制气供气管路,燃料电池堆的空气进气口可选择的接通空气供气管路或抑制气供气管路,燃料电池的氢气排气口可选择的连接气液分离器或接通真空泵,气液分离器的排气口回接氢气供气管路;燃料电池堆接通温度调节器;MQTT信息采集单元连接MQTT通信网关,MQTT通信网关连接燃料电池上位控制机,MQTT信息采集单元电连接燃料电池控制器;MQTT通信网关连接燃料电池控制器;燃料电池控制器电连接氢气供气管路、抑制气供气管路、空气供气管路、温度调节器和真空泵。
Absstract of: CN223321292U
本实用新型公开了一种具有残氨吸收的氨分解制氢‑燃料电池耦合系统,包括液氨源、气化器、第一换热器、氨分解反应器、氨气吸收器和燃料电池。系统通过第一换热器实现氨气的预热,提高能效;氨分解反应器中氨气分解为氢气与氮气,高温产物混合气作为第一换热器的热源,回收能量;氨气吸收器用于对氨分解反应器分解后的产物混合气进行氨气吸收提纯,提纯后的气体用于燃料电池发电。本实用新型通过对氨分解制氢产物气进行高效的残氨吸收,避免了传统方法中高昂的氮气与氢气分离过程,显著降低了系统的分离成本,产物气的氢气满足燃料电池的长寿命使用条件。
Nº publicación: CN223310576U 09/09/2025
Applicant:
珠海格力电器股份有限公司
Absstract of: CN223310576U
本实用新型公开了贮藏装置及制冷设备,贮藏装置包括:贮藏腔;氢氧燃料电池组件,贮藏腔通过氧气引导组件向氢氧燃料电池组件的正极输入氧气;电解组件,电解组件用于向贮藏腔和/或氢氧燃料电池组件的负极供应氢气。其中,氢氧燃料电池组件设有排水管道,氢氧燃料电池组件产生的水通过排水管道引入电解组件中。本实用新型具有氢氧燃料电池组件和电解组件,电解组件启动产生的氢气可以供应给贮藏腔或者氢氧燃料电池组件的负极,氢气供应给贮藏腔可以减少果蔬的乙烯释放量,氢气供应给氢氧燃料电池组件的负极可以作为燃料,通过调控贮藏腔内的氧气浓度和氢气浓度,显著提升保鲜效果。