Absstract of: DE102024105802A1
Die Erfindung betrifft eine Anschlusseinrichtung (2), insbesondere für ein Batteriezellenmodul (1), welche im Bereich einer Öffnung (8) einer Wand (9) einsetzbar ist, mit einem Innenteil (6) und mit einem Außenteil (7), wobei das Innenteil (6) auf einer Innenseite der Wand (9) anordenbar ist und wobei das Außenteil (7) auf der Außenseite der Wand (9) anordenbar ist, wobei das Innenteil (6) durch die Öffnung (8) mit dem Außenteil (7) verbindbar ist, wobei das Innenteil (6) mittig ein elektrisches Kontaktelement (10) aufweist und das Außenteil (7) als ringartiges Element mit zentraler Aussparung (11) ausgebildet ist, um Zugang zu dem elektrischen Kontaktelement (10) durch die zentrale Aussparung (11) zu erlauben, wobei das Innenteil (6) ein erstes Gewinde (12) und das Außenteil (7) ein zweites Gewinde (13) aufweist, derart, dass das Außenteil (7) mit seinem zweiten Gewinde (13) in das Innenteil (6) mit seinem ersten Gewinde (12) einschraubbar ist, wobei das Innenteil (6) einen ersten Randbereich (14) aufweist und das Außenteil (7) einen zweiten Randbereich (15) aufweist, wobei ein Umfangsrand (16) der Wand (9) um die Öffnung (8) zwischen dem ersten Randbereich (14) und dem zweiten Randbereich (15) aufnehmbar ist. Auch betrifft die Erfindung ein Batteriezellenmodul (1) mit zumindest einer Anschlusseinrichtung (2).
Absstract of: DE102024105844A1
Die Erfindung betrifft eine Batterie (10) für ein Kraftfahrzeug, die ein erstes Batteriebauteil (38; 14) mit einer ersten Anbindungsoberfläche (38a'; 14a), eine Kühlplatte (22) mit einer ersten Kühloberfläche (22a, 22b), und eine zwischen der Kühlplatte (22) und dem ersten Batteriebauteil (38; 14) angeordnete, ausgehärtete, flächige erste Anbindungsschicht (50; 34) aufweist. Dabei ist zwischen der ersten Anbindungsschicht (50; 34) und der Kühlplatte (22) eine elektrische erste Heizschicht (40; 42) angeordnet, die in einem durch ein Bestromen der ersten Heizschicht (40; 42) aktivierbaren Heizbetrieb dazu ausgelegt ist, Wärme abzugeben.
Absstract of: DE102025107797A1
Eine Traktionsbatteriepackbaugruppe beinhaltet eine Vielzahl von Batteriezellengruppen, die entlang einer Zellenstapelachse eines Zellenstapels angeordnet ist. Jede der Batteriezellengruppen beinhaltet zumindest eine Batteriezelle. Eine Vielzahl von Flüssigkeitsleiteinrichtungen ist dazu konfiguriert, ein Flüssigkühlmittel axial zwischen den Batteriezellengruppen zu leiten. Die Batteriezellengruppen sind durch zumindest einige der Flüssigkeitsleiteinrichtungen innerhalb der Vielzahl von Flüssigkeitsleiteinrichtungen voneinander getrennt.
Absstract of: DE102024106132A1
Die Erfindung betrifft einen elektrischen Energiespeicher (10) für einen Kraftwagen, mit einem Gehäuse (12), welches wenigstens eine erste Seitenwand (14), eine zweite Seitenwand (16), einen Gehäuseboden (18) und eine Gehäusedecke (20) aufweist, mit einer Vielzahl von in dem Gehäuse (12) angeordnete Batteriezellen (22), mit wenigstens einer sich in länglicher Erstreckungsrichtung (x) von der ersten Seitenwand (14) zur zweiten Seitenwand (16) des Gehäuses (12) und in Hochrichtung (z) von dem Gehäuseboden (18) zur Gehäusedecke (20) erstreckenden elektrisch nichtleitenden Versteifungsstrebe (24), und mit wenigstens einem elektrisch leitenden Zellverbinder (26) für eine Übertragung von elektrischer Energie zwischen den Batteriezellen (22), wobei der Zellverbinder (26) als ein Blechteil ausgebildet ist, welches in der Versteifungsstrebe (24) eingebettet ist und Kontaktierungselemente (28a, 28b) für eine elektrisch leitende Kontaktierung an jeweiligen zur Versteifungsstrebe (24) benachbarten Batteriezellen (22) aufweist.
Absstract of: DE102024105914A1
Die Erfindung betrifft eine Stromspeicherzelle, ausgebildet als Lithium-Ionen-Speicherzelle oder Natrium-Ionen-Speicherzelle umfassend eine Anode, eine Kathode, einen zwischen der Anode und der Kathode befindlichen Separator und eine Elektrolytlösung, die in Poren der Anode, Kathode und des Separators angeordnet ist,wobei die Elektrolytlösung ein Leitsalz und zumindest ein organisches Lösungsmittel umfasst,wobei die Speicherzelle bei einem Ladezustand von 75 % bis 100% einen Volumenfaktor fv zwischen 0,9 und 1,05, bevorzugt 0,95 bis 1,00 aufweist,wobei der Volumenfaktor fvals das Verhältnis (Volumen der Elektrolytlösung)/(Summe der Volumina der Poren in der Anode, der Volumina der Poren in der Kathode und der Volumina der Poren im Separator bei dem Ladezustand von 75 % bis 100%) definiert ist.Eine derartige Stromspeicherzelle weist eine gegenüber herkömmlichen Stromspeicherzellen verringerte Alterung auf.
Absstract of: DE102024105917A1
Die Erfindung betrifft ein Verfahren zum Schnellladen einer elektrischen Stromspeicherzelle, insbesondere einer Fahrzeugstromspeicherzelle eines Fahrzeugs, wobei ein aktueller Ladestrom in Abhängigkeit von einer während des Ladevorgangs auftretenden reversiblen Volumenänderung des aktiven Elektrodenmaterials eingestellt wird.
Absstract of: US2025279535A1
A battery cell includes a shell, an electrode assembly, and a pressure relief mechanism, a battery, and an electrical device. The electrode assembly includes a main body part and a tab. The shell includes a first wall part and a second wall part. Along a second direction, the first wall part and the second wall part are arranged opposite to each other. A channel gap is formed between the second wall part and the main body part. The channel gap is configured to connect spaces in the shell that are located at both ends of the main body part along the first direction. The second direction intersects with the first direction. The pressure relief mechanism is arranged on the first wall part, and along the first direction, a center of the pressure relief mechanism deviates from a center of the first wall part.
Absstract of: US2025279471A1
The present invention provides a polymer electrolyte which is not susceptible to strength decrease even in a high temperature range and has high ion conductivity at room temperature and lower temperatures even if a liquid electrolyte is not contained therein. This polymer electrolyte contains a polymer which has a specific polyether structure having a free end, a specific crosslinked structure by means of a polyether and a specific nitrogen-containing aromatic cationic group; this polymer electrolyte additionally contains a lithium salt; and the volume swelling ratio of this polymer electrolyte is 40% to 120% as determined by a methyl ethyl ketone immersion method.
Absstract of: US2025279415A1
A positive electrode active material and a preparation method therefor, a positive electrode sheet, a battery and an electric device. The positive electrode active material comprises: a core; and a carbon coating layer which covers at least part of the surface of the core, the molar ratio of sp3 hybridized carbon atoms to sp2 hybridized carbon atoms in the carbon coating layer being not less than 0.5.
Absstract of: US2025279498A1
A battery includes a box body, and multiple battery cells and a heat conducting member arranged in the box body. Each battery cell is provided with multiple side walls. The multiple side walls include a first side wall and a second side wall connected to each other. The first side wall is a side wall with the largest area of the battery cell. The second side walls of at least part of the battery cells are connected to the box body in a heat conducting manner through the heat conducting member.
Absstract of: US2025279428A1
A cathode for a lithium-ion battery including a layer of a conductive material arranged to collect the current flowing through the cathode, which layer is referred to as the substrate of the cathode, a layer of aligned carbon nanotubes (CNTs) in electrical contact with the substrate of the cathode and mainly extending perpendicular to the substrate of the cathode, solid sulfur which at least partially coats an outer wall of the CNTs and a solid layer of solid lithium sulfate (Li2SO4), which layer is referred to as the outer layer of Li2SO4, covering the layer of CNTs so as to form a stack of layers in which the layer of CNTs is located between the substrate of the cathode and the outer layer of Li2SO4 is disclosed.
Absstract of: US2025279426A1
This application provides a positive active material, a positive electrode plate, an electrochemical energy storage apparatus, and an apparatus. The positive active material is LixNiyCozMkMepOrAm, or LixNiyCozMkMepOrAm with a coating layer on its surface; and the positive active material is single crystal or quasi-single crystal particles, and a particle size Dn10 of the positive active material satisfies: 0.3 μm≤Dn10≤2 μm. In this application, particle morphology of the positive active material and an amount of micro powder in the positive active material are properly controlled, to effectively reduce side reactions between the positive active material and an electrolyte solution, decrease gas production of the electrochemical energy storage apparatus, and improve storage performance of the electrochemical energy storage apparatus without deteriorating an energy density, cycle performance, and rate performance of the electrochemical energy storage apparatus.
Absstract of: US2025279499A1
A battery module includes: a first battery cell; a first case to accommodate the first battery cell, and having a first through region to expose a portion of a surface of the first battery cell therethrough; a second case to accommodate at least a portion of the first case; and a first heat conducting member between the first battery cell and the second case.
Absstract of: US2025279425A1
A lithium ion battery having excellent charge performance and discharge performance even in a low-temperature environment is provided. A lithium ion battery includes a positive electrode active material containing cobalt, oxygen, magnesium, aluminum, and nickel. The median diameter of the positive electrode active material is greater than or equal to 1 μm and less than or equal to 12 μm. Magnesium and aluminum are included in a surface portion. The surface portion is a region within 50 nm in depth from the surface of the positive electrode active material. The positive electrode active material includes a region where magnesium is distributed closer to the surface side of the positive electrode active material than aluminum is.
Absstract of: US2025279743A1
A solar maintenance charging kit may include a solar panel assembly, an auxiliary battery system configured to receive power from the solar panel assembly, and an electronics assembly configured to adjust a maintenance voltage supplied to a mobile industrial machine from one of the solar panel assembly or the auxiliary battery system. The solar maintenance charging kit may be portable.
Absstract of: US2025279406A1
A method of manufacturing an electrode for an electrochemical element includes applying a first liquid composition onto an electrode composite layer having a rough structure by inkjetting in an amount of 0.34 to 10 mg/cm2 per application to form a first solid electrolyte layer comprising a solid electrolyte, to manufacture the electrode including: a substrate; the electrode composite layer disposed on the substrate, comprising an active material; and the first solid electrolyte layer, wherein the liquid composition comprises the solid electrolyte and a dispersion medium and has a viscosity of 4 to 20 mPa·s.
Absstract of: US2025279423A1
A electrode film includes an active material and a fluorine-containing binder. The fluorine-containing binder includes a polytetrafluoroethylene (PTFE) binder- and the active material includes a lithium transition metal oxide. The content of the fluorine-containing binder is 0.5-10 parts by weight based on 100 parts by weight of the total weight of the electrode film and the electrode film shows an elongation at break of 7% or more. An electrode, a secondary battery, and an energy storage system including the electrode film are also provided.
Absstract of: US2025279424A1
A positive electrode active material which inhibits a decrease in discharge capacity during charge and discharge cycles and a secondary battery which includes the positive electrode active material are provided. The secondary battery includes a positive electrode active material. The positive electrode active material contains lithium cobalt oxide. A total mass of magnesium oxide and tricobalt tetraoxide estimated by Rietveld analysis of a pattern obtained by powder X-ray diffraction of the positive electrode active material is less than or equal to 3% with respect to a mass of the lithium cobalt oxide. A volume resistivity of a powder of the positive electrode active material is higher than or equal to 1.0E+8 Ω·cm and lower than or equal to 1.0E+10 Ω·cm under a pressure of 64 MPa.
Absstract of: US2025278164A1
A roll map of an electrode coating process includes a roll map bar and a representation part. The roll map bar is displayed on a screen in synchronization with movement of an electrode between an unwinder and a rewinder while being coated with an electrode slurry in a roll-to-roll state. The roll map bar is displayed in the form of a bar by simulating the electrode in the roll-to-roll state. The representation part is configured to visually show either one of or both quality-related and defect-related acquired data associated with the electrode coating process. The acquired data is shown at a certain location on the roll map bar corresponding to a location in the electrode at which the data is measured. A roll map of an electrode coating process is generated by a process. A roll map of an electrode coating process is generated by a system.
Absstract of: US2025279493A1
A heat exchange system has an inlet branch adapted to receive a heat exchange liquid, supplied by a first pump and cooled by a chiller, and an outlet branch which circulates the heat exchange liquid to the chiller. The system has a cooling line, which extends from the inlet branch to the outlet branch along a vehicle battery for cooling this battery, and a branch line, which extends along a thermal reservoir containing a material with characteristics such as to store heat/cold and is configured in such a way as to exchange heat between said material and the heat exchange liquid. The system has at least one valve which is configured and controllable to achieve a first operating condition, in which the liquid flows exclusively in the cooling line, and a second operating condition, in which the liquid flows in the branch line and, in series, in the cooling line.
Absstract of: US2025279422A1
The present invention relates to a positive electrode active material, wherein it relates to a positive electrode active material including a lithium composite transition metal oxide in a form of a single particle; and a coating portion containing cobalt which is formed on the lithium composite transition metal oxide in the form of a single particle, wherein the coating portion containing cobalt has a phase gradient from a spinel structure to a layered structure in a central direction from a surface of the positive electrode active material, a preparation method thereof, and a lithium secondary battery including the positive electrode active material.
Absstract of: US2025279494A1
A traction battery pack assembly includes a plurality of battery cell groups disposed along a cell stack axis of a cell stack. Each of the battery cell groups includes at least one battery cell. A plurality of liquid guides are configured to guide a liquid coolant axially between the battery cell groups. The battery cell groups are separated from each other by at least some of the liquid guides within the plurality of liquid guides.
Absstract of: US2025279419A1
A lithium metal negative electrode incorporates a solid-electrolyte interphase (SEI) with distinct inorganic and organic layers, alongside an electrolyte containing a specialized additive. The inorganic layer, close to the lithium metal, may contain Li—F and Si—F bonds, while the organic layer may include carbon- and oxygen-containing CxOy or Si—C. The additive is defined by formulas involving a metal positive ion, Si, and trimethylsilyl groups, and may enhance cycling stability by forming a uniform SEI that suppresses lithium dendrite formation. When combined with an ether-based solvent, the additive can be present in amounts from about 0.1 to about 50 parts by weight of the electrolyte. The resulting battery exhibits high coulombic efficiency, reduced overvoltage, and retains at least 80% of its initial capacity after 100 charge-discharge cycles at a rate of 1C or higher, thus offering improved performance and longevity for lithium secondary battery applications.
Absstract of: US2025279420A1
A lithium-ion battery includes an anode including graphite and a cathode nickel in a mole percent of about 60 percent or more, based on the total composition of the cathode. The lithium-ion battery includes liquid electrolyte including one or both of ethyl methyl carbonate and ethylene carbonate and an oxidant that is soluble in the liquid electrolyte and binds with an alkene having between 2 and 4 carbon atoms.
Nº publicación: US2025276601A1 04/09/2025
Applicant:
LG INNOTEK CO LTD [KR]
LG INNOTEK CO., LTD
Absstract of: US2025276601A1
A charging control system for an electric vehicle, the charging control system including a charging control device for the electric vehicle, and an EVSE (electric vehicle supply equipment) comprising cable and transmitting a signal to the charging control device for the electric vehicle, wherein the charging control device for the electric vehicle including a charging inlet configured to receive charging information and power from the EVSE, a control module configured to determine a charging mode based on the charging information and output a control signal in accordance with the determined charging mode, and a charger configured to charge a battery of the electric vehicle in accordance with the control signal of the control module, wherein the charging mode is determined by a charging standard of the EVSE.