Resumen de: WO2024203753A1
In a fuel cell system according to the present invention, when starting up the system, an oxidant gas is supplied, and a fuel pre-injection step is executed in which a fuel gas is supplied at a supply flow rate of the fuel gas such that fuel concentration in a combustion section is a lower explosion limit or less with respect to a supply flow rate of the oxidant gas, until oxygen concentration remaining in a fuel line from the fuel supply system to the combustion section is a prescribed concentration or less, after which an ignition step is executed to ignite the combustion section.
Resumen de: FR3160976A1
L’invention concerne une composition de caoutchouc à base d’au moins un copolymère EPM ou un terpolymère EPDM, et un article en caoutchouc l’incorporant, tel qu’un joint d’étanchéité ou un tuyau (10) e.g. pour un circuit d’air, d’eau ou de refroidissement équipant une pile à combustible. La composition comprend :- une charge comprenant un noir de carbone et une charge inorganique lamellaire,- un système d’aide à la mise en œuvre,- un système plastifiant, et- un système de réticulation comprenant un peroxyde,dans laquelle la composition comprend, en fractions massiques : 28-32 % du noir de carbone, lequel est choisi parmi les noirs de série ASTM N600 ou N700, et ceux présentant une surface spécifique de 15-25 m²/g, un indice d'adsorption d'iode de 16-24 mg/g et un indice d'absorption de DBP de 90-110 mL/100 g, 10-20 % de la charge inorganique lamellaire, 1,0-6,0 % du système d’aide à la mise en œuvre, lequel comprend un agent de recouvrement du noir de carbone, et 10-22 % du système plastifiant. Fig. 2
Resumen de: JP2024115733A
To provide a carbon carrier simultaneously realizing durability and catalytic activity of a metal carrier catalyst, a metal carrier catalyst, an electrode, and an electric cell.SOLUTION: A carbon carrier is for carrying a catalyst metal particle. The carbon carrier has a BET specific surface area of 300 m2/g or more, real density is 2.1 g/cm3 or more, and has a carbon structure showing, in a Raman spectrum obtained by Raman spectroscopy, one or more characteristics selected from a group of characteristics (i) and (ii): (i) a ratio of intensity of D-band having a peak top in a vicinity of Raman shift 1340 cm-1 to intensity of G-band having a peak top in a vicinity of Raman shift 1580 cm-1 is 1.6 or more; and (ii) a ratio of intensity of 2D-band having a peak top in a vicinity of Raman shift 2700 cm-1 to intensity of G-band having a peak top in a vicinity of Raman shift 1580 cm-1 is 0.3 or more.SELECTED DRAWING: None
Resumen de: WO2024161280A1
An electrochemical device with a modular stack cell structure has, at one end, a cathode plate (h1) and, at the other end, a cathode plate (h2), two electrolyte membranes (ccm), and an anode plate (2a ) between the electrolytic membranes (ccm) which are arranged in a sandwich on the sides of the anode plate (2a). The cathode plates (h1, h2) include gas collection chambers (60) connected to each other via passages (61) and connection channels (16), and communicating with the outside via a hydrogen manifold (15). The anode plate (2a) has a serpentine channel (20) closed laterally by the electrolytic membranes (ccm) and communicating with the outside via an inlet manifold (21) and an outlet manifold (22).
Resumen de: WO2024133627A2
An energy generation system (1) comprises: a catalytic burner (40) for producing heat energy; an insulated vessel (32), wherein the insulated vessel (32) surrounds the catalytic burner (40); and a fuel cell, wherein waste heat from the fuel cell can be provided to the catalytic burner (40) and/or to the insulated vessel (32); wherein the catalytic burner (40) includes a catalytic coil comprising a coil-shaped fluid flow path for flow of a fuel mixture and a catalytic surface extending along at least a part of the coil-shaped fluid flow path.
Resumen de: CN120756655A
本发明涉及发动机技术领域,具体涉及一种氢燃料爆震混电发动机、飞行器及使用方法。一种氢燃料爆震混电发动机,包括:氢燃料电池;压气组件,所述压气组件与氢燃料电池线路连接,所述压气组件以将环境气体压缩为压缩空气;爆震室,与所述压气组件管路连接,所述爆震室内适于流动有压缩空气和氢气,所述压缩空气和氢气以在爆震室内燃烧产生爆震波。本发明提供了一种氢燃料爆震混电发动机、飞行器及使用方法,以解决混电发动机用氢燃料电池产生的高温尾气和压缩空气产生推力,燃料电池产生的尾气温度低,难以产生较大的推力,难以适应飞行器动力需求的问题。
Resumen de: CN120767348A
本发明提供了一种高温氧化物燃料电池系统,包括:电池堆组,电池堆组有发电模式与电解模式;发电模式与电解模式可以切换;水汽预热器与电池堆组的负极连接;空气预热器与电池堆组的正极连接;氢气换热器与电池堆组的负极连接;空气换热器与电池堆组的正极连接;水汽预热器与氢气换热器连接;空气预热器与空气换热器连接;其中水汽预热器、空气预热器、氢气换热器与空气换热器连接形成了发电模式与电解模式的共用热区,解决了发电模式与电解模式使用同一个热区,既能通入水、空气用电池堆组电解水蒸气产生氢气和富氧空气,又能通入氢气、空气用电池堆组发电。
Resumen de: CN120767346A
本发明属于阴离子交换膜技术领域,公开了一种有序嵌段型聚酰基化芳基哌啶膜及其制备方法和应用。本发明先采用对苯二甲酰氯将部分对三联苯进行酰基化,得到有序排列的芳酮嵌段预聚物,后加入N‑甲基‑4‑哌啶酮进行共聚,再用碘甲烷季铵化后铸膜,得到局部有序堆叠的嵌段型聚酰基化芳基哌啶膜。本发明的有序嵌段型聚酰基化芳基哌啶膜内的刚性芳酮嵌段受限结晶能够强化亲疏水微相分离,可拓宽并提供部分有序的受限纳米通道,进而提高膜的氯离子传导率,而高度取向的刚性纳米通道骨架协同尺寸效应有助于阻隔活性物质的渗透,实现膜选择性的大幅提升,应用于中性有机液流电池中性能优异。
Resumen de: CN120767359A
本发明提出一种电池系统的排氢控制方法、装置和存储介质,方法包括:根据电池系统的电堆相关参数和神经网络模型确定排氢阀的开启时间和开启周期;根据开启时间和开启周期控制排氢阀的打开或关断。本发明通过将从理论维度影响排氢控制的电池系统的电堆相关参数输入神经网络模型的输出层,再经过结合了除理论以外的维度影响排氢控制的神经网络模型的抽象层处理,再从神经网络模型的输出层智能地输出精准的排氢阀的开启时间和开启周期,最后根据开启时间和开启周期智能和精准地控制排氢阀的打开或关断,以实现电池系统的中的氢气能精准地和智能地排出,从而实现提升氢气的利用率,降低氢气排放的安全隐患。
Resumen de: CN120767340A
一种碳载非贵金属高熵合金氧还原催化剂及其制备方法和用途,其方法包括:将有机配体和金属盐置于球磨罐中,该金属盐为硝酸盐、乙酸盐或氯化物,金属盐中的金属元素包含铁、钴、镍、锰、铜、锌、铬中的至少五种;将球磨罐放入行星球磨机中进行固相反应,制得高熵金属‑有机配位聚合物;将高熵金属‑有机配位聚合物和碳黑混合,再次使用行星球磨机使两者混合均匀;将混合物料置于管式炉中进行高温热解,氮气在吹扫冷却,制得碳载非贵金属高熵合金氧还原催化剂。本发明提出的制备方法普适易行,具有宏量制备潜力;所制备催化剂的半波电位为0.92V,优于商业化Pt/C催化剂的0.88V,具有良好的氧还原电催化性能。
Resumen de: CN120764262A
本申请公开一种燃料电池电堆总成诊断方法、装置、电子设备及存储介质,涉及燃料电池仿真分析领域,包括:构建目标部件的物理模型;简化目标部件的物理模型的局部特征,生成目标部件的优化物理模型;基于目标部件的优化物理模型,结合多物理场维度对所述目标部件进行分析,生成多模型分析结果数据;获取预设目标指标数据;获取电堆运行实时数据;根据多模型分析结果数据与预设目标指标数据的对比结果;判断多模型分析结果数据是否满足预设目标指标数据;若否,则结合实时采集的电堆运行数据,对目标部件的物理模型的输入参数进行动态修正;若相邻两次迭代的分析结果的相对偏差在预设范围内且所有指标满足预设目标指标数据,则输出诊断结果。
Resumen de: CN120767336A
本发明涉及新材料和电化学储能材料技术领域,公开了一种聚酰亚胺衍生的分级多孔碳/碳纤维复合电极及其制备方法,其制备方法为:以碳纤维毡为基底,通过聚酰亚胺溶液喷涂、金属有机凝胶模板沉积、梯度碳化及低共熔活化工艺,构建出微孔‑介孔‑大孔三级贯通结构。本发明通过模板协同与活化工艺优化,使构建出的复合电极具有独特的微孔‑介孔‑大孔三级贯通结构,解决了传统碳电极传质受限与活性位点不足的难题,可广泛适用于全钒、铁铬及有机体系液流电池,具有显著的工业化应用价值。
Resumen de: CN120757130A
本发明涉及电池原材料技术领域,具体涉及一种硫化锂粉体的制备方法和硫化锂粉体及应用,包括:将硫酸锂与碳源按预设比例混合均匀,获得第一混合物;将第一混合物在惰性气体中进行第一热处理,获得第二混合物;将第二混合物在还原性气体中进行第二热处理,获得硫化锂粉体。本发明的制备方法获得的产品为硫化锂粉体,获得的硫化锂粉体的氧和碳的杂质较少,硫化锂粉体的纯度较高,反应活性高,满足电解质的合成要求;本发明的制备方法在制备硫化锂的过程中,避免使用有毒气体和有机溶剂,反应的温度较低,能耗小,对生产设备的要求较低,工艺简单,成本低廉,无有害气体排放,安全、环保,易于实现工业化。
Resumen de: CN120757823A
本发明属于燃料电池技术领域,具体涉及一种聚芳醚基阴离子交换膜及其制备方法和应用。本发明的支化型氢键作用聚(联苯醚‑靛红)阴离子交换膜用于碱性阴离子交换膜燃料电池,通过改变阳离子基团以及带有羟基和烷氧基的柔性侧链的接枝比例,可以控制所制备膜的离子交换容量、吸水溶胀、机械强度等性能。本发明合成了一种聚合物主链中含有醚键的阴离子交换膜,合成过程简单高效,引入的支化结构可以增加自由体积,从而扩建更加宽广且连续的高通量离子传输通道,羟基和烷氧键的协同作用可以形成一定的氢键作用,促进构建更宽广的离子传输通道,这些都改善了膜的微相分离形态,大大优化了膜的综合性能。
Resumen de: CN120767345A
本发明涉及全钒液流电池电极技术领域,公开了一种三维碳纳米管改性石墨毡及其制备方法与应用,包括以下步骤:通过在石墨毡上两次气相沉积碳纳米管和溶剂热负载酞菁,再清洗除去金属镍,得到三维碳纳米管改性的石墨毡,在石墨毡上负载碳纳米管能够有效的提高导电性,其三维结构能够有效的增大石墨毡的催化活性位点,从而提高全钒液流电池的能量效率和电压效率。
Resumen de: CN120767356A
本发明涉及一种应用于电池热管理系统的水泵控制方法、设备以及车辆。该方法包括:获取电池热管理系统中流经电池的冷却液的实际出入口温差和目标出入口温差;并根据实际出入口温差和目标出入口温差,确定流经电池的冷却液的出入口温差控制误差;获取电池的电池功率,并根据电池的电池功率和当前修正量,确定切换阈值;若确定出入口温差控制误差小于切换阈值,则根据流经电池的冷却液的入口水压和入口水压的监测时长,控制电池热管理系统中的水泵工作,使得水泵将冷却液传输至电池,以对电池进行冷却处理。本发明可以在实现电池冷却的基础上,有效减少水泵转速和水压反复波动的情况,进而保证水泵的寿命和电池的寿命。
Resumen de: CN120767360A
本申请公开了一种基于流化床电极的可逆固体氧化物电池储能装置,包括:反应器主体、固体氧化物电池、储能罐、释能罐和气体循环外回路;反应器主体中部连接固体氧化物电池,两侧分别连通储能罐和释能罐;气体循环外路包括风机,氢气和水蒸气的混合气通过风机鼓入反应器主体。使用该装置时,储能阶段,固体氧化物电池消耗电力将水蒸气电解为氢气,氢气还原四氧化三铁为铁单质,实现能量的储存;释能阶段,铁单质与水蒸气反应生成氢气,固体氧化物电池氧化氢气发电,实现能量的释放。该装置以氢气和水蒸气混合气作为流化和能量介质,实现非熔融态金属电解储能,系统的能量储存密度高,规避了传统电解水储能中氢气储存难的瓶颈问题,应用前景广泛。
Resumen de: CN120767355A
本发明公开了一种PEMFC可逆衰减在线监测与恢复设备及方法,设备包括:参数调节模块、控制器、多区域检测器和电池,其中,所述参数调节模块、所述控制器和所述多区域检测器依次连接;所述参数调节模块包括空压机、加湿器和风扇,所述控制器内置三维可逆衰减模型,所述空压机、加湿器和风扇分别与所述控制器和所述电池连接,所述电池与所述多区域检测器连接。本发明通过PEMFC三维可逆衰减模型,快速计算不同初始条件和运行时间下不同区域的ECSA和电导率,对PEMFC电学性能进行精细化实时检测和恢复,大幅度减少了精细化检测的成本。
Resumen de: CN120767347A
本发明申请提供了一种新型双极板流场结构,其包括双极板本体,所述双极板本体的两端分别设有反应物进口、反应物出口,所述双极板本体的中部设有流场区,所述流场区内部设有流场结构,所述流场结构包括多条平行分布的直流道脊部,所述直流道脊部上设有上凸脊、下凸脊,所述上凸脊、所述下凸脊构成重复单元,并呈周期性分布排列,其能够增加沿程距离,使得反应物与流道充分接触,同时能够减少气泡聚集,降低局部过热的风险,保证散热性能。
Resumen de: CN120767350A
本发明涉及氢燃料电池系统设计技术,具体涉及一种燃料电池系统及控制方法;该系统包括氢气阳极模块、空气阴极模块、风冷燃料电池堆和液冷燃料电池堆;氢气阳极模块中氢瓶与氢气分流调节装置相连;氢气分流调节装置与风冷燃料电池堆和液冷燃料电池堆相连;液冷燃料电池堆与氢气分流调节装置和液冷燃料电池堆相连;风冷燃料电池堆与氢气分流调节装置和液冷燃料电池堆相连;风冷燃料电池堆和液冷燃料电池堆均与排气排水结构相连;空气阴极模块中的空气供给装置与空气调节装置相连;空气调节装置分别与液冷燃料电池堆的阴极和风冷燃料电池堆的阴极相连;液冷燃料电池堆与节气门的阴极相连接;本发明提高了整体燃料电池的氢气利用率。
Resumen de: CN120767339A
本发明公开了一种质子交换膜燃料电池膜电极微孔层的制备方法,包括如下步骤:将炭黑分散于无水乙醇中,加入碳纳米管形成混合体系,高速分散得到分散液;其中,所述炭黑与碳纳米管的质量比为65‑95:5‑35;向分散液中加入纳米纤维素,磁力搅拌后超声分散;其中,所述纳米纤维素与炭黑的质量比为15‑35:100;再向分散液中加入聚四氟乙烯,继续超声分散搅拌,形成复合浆料;其中,所述聚四氟乙烯与炭黑的质量比为2‑4:7;将所述复合浆料喷涂在碳纸上,经干燥、固化、烧结后,完成质子交换膜燃料电池膜电极微孔层的制备。本发明通过纳米纤维素与碳纳米管协同复合炭黑制备膜电极微孔层,优化其导电性、疏水性、透气性等性能,提升了质子交换膜燃料电池的输出功率与稳定性。
Resumen de: CN120767354A
本申请涉及一种燃料电池阳极氢气浓度的管理方法、装置、车辆及介质,包括:获取驱动数据、当前时刻氢气浓度观测值和目标氢气浓度值;将驱动数据输入至预设的状态空间模型,得到第一模型参数至第四模型参数,将第一模型参数至第四模型参数更新预设的扰动观测器得到当前时刻的扰动估计值;将当前时刻氢气浓度观测值和目标氢气浓度值输入至预设控制器得到预设控制器的输出量,根据当前时刻的扰动估计值和预设控制器的输出量得到当前排气阀开启时长,并基于当前排气阀开启时长控制排气阀,以管理燃料电池阳极的氢气浓度。由此,解决了氢气估计模型精度低,控制精度低的问题,通过实时在线估计并实时更新模型,提升模型的准确性。
Resumen de: CN120767357A
本发明属于燃料电池汽车安全保障技术领域,提出了一种氢气瓶气体泄放装置、检测控制方法、氢气瓶及车辆,包括设置在氢气瓶不同位置的至少两个泄放管道,每个泄放管道上设置有泄压阀;每个泄放管道上并联有带有管阀的辅助泄放管道,辅助泄放管道的两端分别位于所述泄压阀的两端;泄放管道内设置有能够检测所述泄放管道内气流的检测设备;气体泄放时,当检测到存在泄放管道内气体流量小于预设值时,控制对应的管阀打开;以及,管阀打开后,根据泄放管道内气体流量判断泄放管道是否堵塞;通过对泄放管道内气体流量的检测,能够对所有PRD泄放进行检测,以及能够泄放管道的堵塞情况进行判断,避免PRD泄放速率较慢或泄放管道堵塞时影响气体泄放的问题。
Resumen de: CN120767353A
本发明涉及燃料电池领域,具体为一种评价燃料电池电堆流量分配一致性的可视化仿真方法。其包括以下步骤:S1、建立电堆流道简化几何模型;S2、在进口总管、出口总管和电堆堆芯之间生成交界面,并命名边界面;S3、对处理好的几何模型进行网格划分;S4、在仿真软件中设置边界条件;S5、分别提取每条单电池子流道的实际流量值;S6、利用均匀性公式计算每条单电池子流道的偏差率;S7、预设偏差率参数值,筛选出超出偏差率参数值的单电池流道序号,控制全部单电池子流道的偏差率均在‑P~+P以内。本发明能在电堆流道结构设计时快速获取不同位置单电池流量分配情况,为电堆结构设计提供确切的可视化依据,周期短,费用低。
Resumen de: CN120767361A
本发明公开了一种氢燃料电池的防护装置,涉及电池防护技术领域,包括仿生蜂窝抗冲击机构,所述仿生蜂窝抗冲击机构包括抗冲击套,所述抗冲击套的内部开设有蜂窝状通孔,所述蜂窝状通孔的内壁设置有微型阻尼器;氢燃料电池工作温度稳定机构,所述氢燃料电池工作温度稳定机构包括半导体制冷器,所述半导体制冷器设置在抗冲击套的表面,所述半导体制冷器的一侧设置有制冷端;辅助散热机构,所述辅助散热机构包括安装盒。本发明通过仿生蜂窝抗冲击机构的设置,设置在氢燃料电池表面,采用高强度尼龙材料制成六边形蜂窝单元,每个单元内置微型阻尼器,阻尼角度不同,实现多方向冲击力均匀分散,相较于传统弹簧阻尼器减震,减震效果更好。
Resumen de: WO2024178672A1
A method for determining a shape parameter of a fluid pathway, comprising: step S410, obtaining first simulation data, wherein the first simulation data is associated with the characteristics of a fluid when the fluid flows in a fluid pathway with a first shape parameter; step S420, in response to a simulation operation condition being met, providing the first simulation data to a machine learning model (150) so as to obtain a second shape parameter of the fluid pathway; and step S430, providing the second shape parameter to a simulation system (120) so as to obtain second simulation data, wherein the second simulation data is associated with the characteristics of the fluid when the fluid flows in the fluid pathway with the second shape parameter.
Resumen de: CN120767351A
本发明公开了一种燃料电池叉车供氢系统,涉及燃料电池叉车上应用的技术领域,包括储氢系统,储氢系统包括氢瓶,氢瓶设置在固定架上,固定架固定在固定平台上表面,管路系统固定在固定平台下表面;固定平台上设有连接头,氢瓶连接有第一连接管,管路系统和第一连接管分别与连接头连接。避免了更换氢瓶时对管路造成磕碰,降低了操作故障率。通过将管路系统直接固定在固定平台上,实现了管路的通用化生产,降低了成本。增大了整车和储氢系统的空间,可适应不同应用场景的配置调整。
Resumen de: CN120756168A
本发明属于全钒液流电池材料领域,公开了一种耐酸阻燃保温隔热材料。是由EVA耐酸膜、阻燃粘合剂、橡塑保温棉、阻燃粘合剂依次粘接而成的膜。材料较过去方案材料成本大为降低,对环境友好,在大部分环境条件下均可有效起到为钒电池系统保温的作用,并且可以根据系统保温隔热需求,选不同厚度该材料粘贴到整个电池系统内壁,材料可随意剪切,施工简便快捷。
Resumen de: CN120767337A
本发明公开了一种超薄石墨毡及制备方法。本发明使用水刺和针刺相结合工艺,先用水刺工艺制成10‑80g/c㎡的预氧化丝网胎,然后将网胎多层堆叠,再进一步进行水针针刺,刺成120‑320g/c㎡的水刺毡,厚度≤1.5mm,之后再进行进一步针刺,使得其厚度≤1.2mm,最后进行碳化和石墨化制成超薄石墨毡。本发明制备得到的石墨毡厚度较薄,质子传输距离短,制成的电极材料运行效率更高。
Resumen de: CN223427515U
本实用新型涉及燃料电池技术领域,公开了一种燃料电池发动机冷却系统及车辆,包括:换热器;第一冷却系统,与换热器一端连接;第二冷却系统,与换热器的另一端连接;第一管道和第二管道中均含有冷却液,且第一管道中冷却液少于第二管道中冷却液。通过换热器将第一冷却系统和第二冷却系统集成于一体,有效节省了燃料电池内的空间,通过减少第一冷却系统中零部件的数量,使得第一冷却系统中冷却液的剂量大幅减少,使得电堆冷启动的时间缩短,提高启动效率,另一方面,由于第一冷却系统中无需额外安装中冷器和PTC加热器等辅助装置,确保第一冷却系统中的冷却液的离子含量能够保持在较低的范围,电堆的绝缘性能够长期保持在较高的水平。
Resumen de: CN120767349A
本发明涉及无人机动力系统热管理技术领域,公开了一种飞机用液冷氢燃料电池系统的热管理控制系统及方法,该热管理控制系统具有燃料电池冷却回路与机载设备冷却回路,通过第一节温器、第一水泵及散热单元控制电堆进出口温差,两回路通过热交换组件热耦合。所述热管理控制方法基于电堆入口温度及进出口温差,调节节温器开度与水泵转速:燃料电池系统启动阶段关闭节温器实现快速升温;小功率运行时耦合机载设备回路散热;大功率运行时,多散热单元并联散热。本发明突破传统散热依赖螺旋桨或蒙皮气流的限制,实现地面调试与高空飞行全工况温控,并且显著拓宽了热管理控制系统的散热功率范围,提高了能量利用率。
Resumen de: CN120767358A
本发明公开了一种燃料电池健康状态在线快速诊断方法及系统,包括如下步骤:S1、选取燃料电池中多个特征电流密度点,并实时检测获取各特征电流密度点对应的电压巡检信号;S2、记录各特征电流密度点在对应运行时刻t的电压与初始时刻t0的电压差值;S3、比较各特征电流密度点在运行时间t和初始时刻之间的电压差值,根据个特点电流密度点的电压差值来判断燃料电池的健康状态。本发明无需额外的诊断设备,操作简单,准确度高,且可实时在线快速诊断,实现对燃料电池系统内部膜电极健康状态的快速检测排查,实现提前风险预警以及故障排查。
Resumen de: WO2024188658A1
The present invention relates to a system (100) for powering an electric motor (82) of a hybrid electric vehicle, the powering system (100) comprising a hydrogen fuel cell (26), a hydrogen tank (160) capable of supplying the hydrogen fuel cell (26), and a voltage booster (740) at the output of the hydrogen fuel cell (26), the voltage booster (740) comprising an induction coil (741), the hydrogen tank (160) being a cryogenic tank capable of maintaining the hydrogen in the liquid state and at a temperature lower than a liquefaction temperature of the hydrogen, the induction coil (741) being immersed in the hydrogen tank (160) and formed from a material that is a superconductor at the temperature of the liquid hydrogen in the hydrogen tank (160).
Resumen de: CN120758231A
本发明涉及精细化工技术领域,且公开了一种燃料电池冷却液及其制备方法,包括以下步骤:基础液制备、缓蚀体系构建、离子抑制处理、功能助剂添加及后处理;本发明中,复合缓蚀剂通过硅酸钠与纳米氧化锌在剪切分散条件下的表面负载效应,使锌离子锚定于硅酸盐骨架的空隙位点,在金属管路表面形成致密的复合钝化膜,覆盖电极电位活跃区域;同时钼酸根离子凭借其氧化还原特性,优先在钝化膜缺陷处发生自修复反应,通过动态填补微裂纹阻断电偶腐蚀微电池的形成,提高缓蚀体系的完整性;复合缓蚀剂各组分在特定比例下产生的协同效应,使冷却液长期维持稳定的防腐性能。
Resumen de: CN223427518U
本实用新型公开了一种质子交换膜燃料电池热电联供系统尾气处理装置,质子交换膜燃料电池热电联供系统尾气处理装置包括进气管和排气管,进气管与排气管之间设置有热交换组件。使用时,质子交换膜燃料电池热电联供系统排出的尾气进入进气管,尾气继续进入热交换组件,热交换组件用于降低尾气的温度,使得尾气中的水蒸气冷凝成液态的冷凝水,经过降温后的尾气通过排气管排出。此时排出的尾气中的水蒸气已经被分离出去,能够有效防止在排气管的排出口冷冻结冰的现象发生,便于对质子交换膜电池热电联供系统进行维护,保证质子交换膜电池热电联供系统的正常运行,降低经济损失,提高经济效益。
Resumen de: CN223427516U
本实用新型公开了一种叉车燃料电池系统,涉及燃料电池领域;包括燃料电池系统模块、固态金属储氢模块及动力电池模块三部分,所述燃料电池系统模块、固态金属储氢模块及动力电池模块均固定于叉车箱体的内部。本实用新型总体划分为三个模块:燃料电池系统模块、固态金属储氢模块及动力电池模块,三个模块相互独立,界限明确,互不影响,使得整个系统可以同时兼顾固态金属储氢形式和气体储氢瓶形式,同时动力电池也可以兼顾多种尺寸规格,从而使得整套系统具有多种集成模式及多个应用场景,延伸及应用范围较广。
Resumen de: CN223427513U
本申请涉及一种连接体结构和固体氧化物电池电堆,连接体结构包括第一表面和第二表面,第一表面和第二表面均设有凹槽;凹槽用于与固体氧化物电池单电池的其中一个电极围设形成腔体,腔体内用于通入气体;第一表面和第二表面设置的至少一个凹槽包括扰流段,扰流段设有多个第一凸起和多个第二凸起,多个第一凸起沿第一方向间隔排布,形成有多条平行且相间隔的流道,相邻流道之间通过多条细缝相连通,多个第二凸起沿第二方向间隔排布,第二凸起均匀设于流道中靠近细缝处,第一凸起和第二凸起之间具有间隙;其中,第一方向与第二方向相交。本申请可以使气体扩散均匀,可以提升固体氧化物电池单电池及电堆性能和稳定性。
Resumen de: CN223427510U
本实用新型提供了一种膜电极制备装置,涉及膜电极加工技术领域,本实用新型的膜电极制备装置中,热压组件包括至少一对热压辊,第一放料辊用于放卷质子交换膜保护膜组件,第一收料辊用于收卷质子交换膜保护膜组件中的质子交换膜保护膜,第二放料辊用于放卷电极催化层基底膜组件,第二收料辊用于收卷质子交换膜和电极催化层,第三收料辊用于收卷电极催化层基底膜,清洁机构用于清洗收卷前的电极催化层基底膜。本实用新型所述的膜电极制备装置,结构简单,用于制备膜电极,可对电极催化层基底膜进行清洗和回收,利于降低膜电极的制备成本。
Resumen de: CN223427514U
本申请涉及一种双极板及燃料电池,所述双极板包括:板体;气体流道,设置在所述板体的表面;进气通道,设置在所述板体的表面,与所述气体流道之间形成气体分配区;支撑体,设置在所述板体的表面的气体分配区内;气体流向所述气体分配区,经所述支撑体导向分流后流入所述气体流道。通过在双极板的气体分配区内设置支撑体,有效改善了气体分配区的气体流动状况,使得气体能够均匀、平稳地分配到各个气体流道中,解决了因双极板中两侧气体压力差导致的膜电极偏移问题,从而确保了膜电极边框与双极板之间的紧密贴合,避免了因压力不均而导致的流阻增大和气流不畅问题,提升了双极板的稳定性和整体性能,延长了其使用寿命。
Resumen de: WO2024190381A1
A method for producing a separator according to one embodiment of the present disclosure is for producing a separator that comprises a flow path part through which a gas for generating electrical energy passes and a bead part which is provided with a gasket at the top. This method for producing a separator comprises: a step in which a first projecting part corresponding to the flow path part is formed in a planar base material by means of press molding; a step in which a surface layer is formed on the surface of the base material in which the first projecting part has been formed; a step in which a gasket is provided in a planar bead part formation region, in which the bead part is to be provided, on the base material on which the surface layer has been formed; and a step in which a second projecting part corresponding to the bead part is formed in a position where the gasket has been provided.
Resumen de: WO2024170297A1
The invention relates to a method for operating an air system (1) for supplying oxygen to at least one fuel cell, wherein the air system (1) has an air path (2) having an integrated air filter (3) and an integrated air compressor (4), and wherein ambient air is drawn in by means of the air compressor (4), purified by means of the air filter (3) and compressed by means of the air compressor (4) before being fed as an oxygen source to the fuel cell. According to the invention, a diagnosis of the air filter (4) is performed during the operation of the air system (1) and is used for - detecting excessively high loading of the air filter (3), - determining the degree of loading of the air filter (3), - detecting unauthorized removal of the air filter (3), - detecting a leak in the air path (2) upstream of the air compressor (4), and/or - detecting a hose collapse, wherein the present pressure difference (Δp) across the air filter (3) is ascertained, and the loading of the air filter (3) is inferred from the present pressure difference (Δp). The invention also relates to a control unit for carrying out steps of the method.
Resumen de: CN120767344A
本申请涉及固体氧化物燃料电池技术领域,尤其涉及一种镍基复合阳极粉体的制备方法及应用。该方法先将季铵盐溶液与镍盐溶液混合后进行过滤操作,所得固相物即为氧化镍前驱体;在氧化镍前驱体形成的溶液中依次加入氧化铝和YSZ,混合均匀后,经过滤、球磨、煅烧、气流破碎操作,得到镍基复合阳极粉体。本申请制备的镍基复合阳极粉体具有粒径小、比表面积大、电阻小的优势,且回收率高、稳定性好,有助于延长阳极电极的使用寿命,解决了现有制备方法中镍基复合阳极粉体粒径与分散性难以兼顾、且镍基复合阳极粉体稳定性欠佳的问题。
Resumen de: CN120764190A
本申请公开了一种燃料电池的寿命预测方法、装置、电子设备和存储介质,该方法和装置应用于电子设备,用于在车用工况下对燃料电池的真实寿命进行预测,具体为采集燃料电池的多个运行参数;利用燃料电池衰减模型对多个运行参数和多个预设时刻进行处理,得到每个预设时刻对应的仿真窜漏量;将每个仿真窜漏量与预设的失效阈值进行对比,将与大于或等于失效阈值的仿真窜漏量对应的预设时刻确定为失效时刻;基于当前时刻和失效时刻确定燃料电池的剩余使用寿命。本方案利用预先搭建的燃料电池衰减模型对燃料电池当前的多个运行参数进行处理,得到燃料电池在车用工况下衰减模式作用下的气体窜漏量,最终实现根据气体窜漏量预测燃料电池剩余使用寿命的目的,从而实现应用于车用工况下燃料电池的真实寿命评价。
Resumen de: CN223427511U
本实用新型属于液流电池储能技术领域,特别涉及一种复合电极结构及锌溴液流电池。所述电极包括层叠设置的二片碳毡和位于二片碳毡间的1块锌片,或于二片碳毡间层叠设置的由碳毡间隔的2块以上锌片;于锌片上设置通孔。在负极碳毡中间放置锌片,可以诱导锌溴液流电池在充电过程中,锌在锌片优先沉积,将锌的沉积界面调控至碳毡内部,远离隔膜,可有效的抑制锌枝晶的影响。
Resumen de: CN223427517U
本实用新型公开了一种具备安全泄放功能的燃料电池氢气阀,包括:阀体,其内部设有用于氢气流通的通道;进气管,设于通道的第一端;出气管,设于通道的第二端,出气管用于与容器连通;调节组件,设于通道并用于控制进气管与出气管之间的连通或者阻隔;泄压组件,设于通道靠近出气管的一侧,泄压组件用于在容器内压力过大时释放氢气。本申请提供的一种具备安全泄放功能的燃料电池氢气阀,通过该阀门能够实现氢气的冲装,在容器内氢气压力过大时通过泄压组件能够释放一定量的氢气,提高安全性。
Resumen de: CN223424200U
本实用新型公开了一种燃料电池用氢气循环泵,包含泵头、电机和电机控制器,其中:所述泵头为软管泵,主要包含泵壳、挤压轮架、挤压轮、挤压软管、进气口、出气口和泵盖;挤压轮架、挤压轮和挤压软管安装在泵腔里面,挤压轮安装在挤压轮架上,挤压软管的两端分别与进气口、出气口连通;电机与泵头安装连接起来,电机的轴伸端伸入泵腔里面与挤压轮架连接;电机控制器控制电机工作;在泵头上安装有氢气浓度传感器,氢气浓度传感器检测泵腔里面的氢气浓度判断是否有氢气泄漏。它可以实现循环泵的无泄漏、无腐蚀、无氢脆、无结冰;采用分离式泵头设计,可实现不同需求氢气循环泵的快速设计和更换。
Resumen de: CN120767352A
本发明提供了一种压缩空气与余热耦合储能的氢燃料电池冷启动系统,该系统中,压缩空气储罐、空气加热管路、增湿器之间连接形成有加热空气供应支路,其与电堆的空气入口相连通;储氢瓶、氢气加热管路连接形成有加热氢气供应支路,其与电堆的氢气入口相连通;电堆的冷却液出口与冷却液换热管路之间具有连通状态,冷却液换热管路的出口通过冷却液预热支路与电堆的冷却液入口连通,冷却液预热支路上设置有冷却液循环泵,冷却液换热管路与储热介质换热,用于将电堆冷却液的余热储存在储热介质中,或对冷启动工况下的冷却液预热。实现了冷启动条件下的阴极空气加热供应、阳极氢气加热供应以及冷却液预热电堆,具有冷启动能耗低、启动响应快的优点。
Resumen de: CN120767341A
本发明提供了一种具有结构稳定性的可逆固体氧化物电池及其制备方法,可逆固体氧化物电池包括由下至上层叠设置的氢电极层、电解质层、阻挡层以及氧电极层,其中,氧电极层包括多个电极单元,相邻两电极单元之间存在间隙;本发明通过将可逆固体氧化物电池的氧电极层设计为多个间隔设置的电极单元,单个电极单元的几何各向同性使其在受力时能均匀分散热应力与机械应力,避免局部过载;从传质角度看,相邻电极单元间的间隙充当氧气释放快速通道,能够有效降低氧分压梯度,加快氧扩散效率。这两方面的设计协同作用,可大幅减小氧电极层与阻挡层界面因应力不均、氧分压差异产生的分层风险,进而显著提高固体氧化物电解池的可靠性和使用寿命。
Resumen de: FR3161075A1
Électrolyseur à haute température comprenant des interconnecteurs (4) ondulés équipés de tiges de renfort (30). Procédé de fabrication s’y rapportant. Figure pour l’abrégé : Fig. 5
Resumen de: WO2024181088A1
A fuel cell system (100) of the present disclosure comprises: a fuel cell (10); a first input/output terminal (20) to which a first external power source (50) can be connected, the first input/output terminal (20) being connectable to an AC load; a second input terminal (22) to which a second external power source (52) can be connected; a second output terminal (24) to which a DC load can be connected; and a control circuit (32) that performs electrical processing to convert DC power generated by the fuel cell (10) into AC power and supply the AC power to the first input/output terminal (20) when the first external power source (50) is connected to the first input/output terminal (20), and to supply DC power generated by the fuel cell (10) to the second output terminal (24) when the second external power source (52) is connected to the second input terminal (22).
Resumen de: WO2025211527A1
Disclosed are a radical scavenger for improving durability, a membrane-electrode assembly, a fuel cell, and methods for manufacturing the foregoing. According to one aspect, provided is a radical scavenger comprising radical-scavenging particles and a protective layer formed on the surfaces of the radical-scavenging particles, wherein a ratio of the standard deviation of thickness to the average thickness of the protective layer is 5 % or less.
Resumen de: DE102024203045A1
Die Erfindung betrifft ein Verfahren zum Betreiben einer Stackanordnung, die mindestens einen Stack (2) sowie eine den mindestens einen Stack (2) aufnehmende Einhausung (3) umfasst, wobei die Einhausung (3) ein gasgefülltes Volumen (4) umschließt, das für einen Gasaustausch über einen Gaseinlass (5) mit einer Einlassleitung (6) und über einen Gasauslass (7) mit einer Auslassleitung (8) verbunden ist. Erfindungsgemäß wird durch Öffnen eines in eine Rezirkulationsleitung (9) integrierten Ventils (10) ein Gas oder Gasgemisch aus dem Volumen (4) ausgeleitet und über die Rezirkulationsleitung (9) und den Gaseinlass (5) wieder in das Volumen (4) eingeleitet.Die Erfindung betrifft ferner eine Stackanordnung (1), die zur Durchführung des erfindungsgemäßen Verfahrens geeignet ist.
Resumen de: WO2025211001A1
A fuel battery block (200) comprises: a first plate member 21; a second plate member 22; a frame member 23; a plurality of first fuel battery cells 100a; and a plurality of second fuel battery cells 100b. In the first fuel battery cell 100a, a first lead-out part 14a is positioned on the first plate member 21 side, and a second lead-out part 12a is positioned on the second plate member 22 side. In the second fuel battery cell 100b, the second lead-out part 12a is positioned on the first plate member 21 side, and the first lead-out part 14a is positioned on the second plate member 22 side.
Resumen de: US2025314354A1
The gas supply device disclosed in the present specification includes a cover that shuts off the periphery of the main stop valve and the connector of the gas cartridge from the outside air, and a removal device that removes impurities from the inner space of the cover in a state where the connector and the main stop valve are not connected. The controller of the gas supply device connects the main stop valve and the connector when impurities are removed from the inner space by the removal device, and opens the main stop valve. The gas supply device disclosed herein shuts off the periphery of the main stop valve and the connector from the outside air and removes impurities from the periphery of the main stop valve. Therefore, contamination of the gas supply device with impurities can be suppressed.
Resumen de: US2025313964A1
Proposed is a system for producing blue hydrogen, capturing carbon dioxide and sulfur oxide, recycling carbon and storing reactants, generating power by using a fuel cell, and creating an artificial forest. The system includes a natural gas storage that stores liquefied natural gas including shale gas, a hydrocarbon reformer that produces a gaseous mixture containing hydrogen and carbon dioxide, a hydrogen charging station configured to receive and store the hydrogen, to capture carbon dioxide, to collect a reactant, and to separate a carbon dioxide reactant and a waste solution from the reactant, a carbon resource storage that stores the carbon dioxide reactant, a hydrogen generator that generates hydrogen and transfers the generated hydrogen to the hydrogen charging station, a fuel cell that receives the hydrogen and generates electricity, and an artificial forest creation apparatus that captures carbon dioxide in the atmosphere and transfers the captured carbon dioxide to the reactor.
Resumen de: US2025313100A1
A system for a vehicle, the system comprising a hydrogen fuel storage system for storing hydrogen fuel; a recirculation hydrogen fuel system for transporting hydrogen fuel, the recirculation hydrogen fuel system having a fuel inlet configured to be in fluid communication with the hydrogen fuel storage system and further a fuel return line to the hydrogen fuel storage system, wherein the recirculation hydrogen fuel system is configured to be in fluid communication with a hydrogen fuel-consuming power source, the system further comprising an electrically powered compressor disposed in the recirculation hydrogen fuel system; and wherein the electrically powered compressor is controllable to pressurize hydrogen fuel in the recirculation hydrogen fuel system in response to a determined need for dissipating energy.
Resumen de: US2025313688A1
The invention relates to a rubber composition based on at least one EPM copolymer or one EPDM terpolymer, and a rubber article incorporating it, such as a seal or a pipe (10) e.g. for an air, water, or cooling circuit equipping a fuel cell.The composition comprises:a filler comprising a carbon black and a lamellar inorganic filler,a processing aid system,a plasticizing system, anda crosslinking system comprising a peroxide,wherein the composition comprises, in mass percents:28-32% of carbon black, which is chosen from theASTM N600 or N700 series of blacks, andthose having a specific surface area of 15-25 m2/g, an iodine adsorption index of 16-24 mg/g, and a DBP absorption index of 90-110 mL/100 g,10-20% of the lamellar inorganic filler,1.0-6.0% of the processing aid system, which comprises a carbon black covering agent, and10-22% of the plasticizing system.
Resumen de: US2025313101A1
The present invention is a self-charging battery-powered electric vehicle (EV) that integrates a dual traction battery system and a hydrogen fuel cell to enhance driving range and efficiency. The EV features a first traction battery pack and a second traction battery pack, wherein a power controller automatically switches between battery packs and enables the hydrogen fuel cell to recharge the inactive pack while driving. A hydrogen fuel cell system, coupled with swappable (i.e., selectively removable) and fixed hydrogen tanks, generates electricity for battery charging and direct propulsion. Additionally, a hydrogen tank swapping station provides secure and automated hydrogen refueling. The system optimizes energy distribution based on driving patterns, terrain, and climate conditions.
Resumen de: US2025313668A1
This disclosure provides ionomers comprising a polymeric backbone that includes highly acidic bis(sulfonyl)imide groups and methods of making these ionomers and membranes formed from these ionomers and devices comprising these ionomer membranes.
Resumen de: US2025313968A1
An object of the present invention is to provide an electrode assembly in which an electrolyte membrane is kept from being deteriorated with durability improved. The present invention provides a membrane electrode assembly including an anode electrode on one surface of an electrolyte membrane and a cathode electrode on the other surface thereof, characterized in that the anode electrode includes a porous substrate (A), the cathode electrode includes a porous substrate (B), and the porous substrate (A) and the porous substrate (B) has a total thickness more than 1,000 μm.
Resumen de: US2025315579A1
The present disclosure relates to a field of a fuel cell test, and in particular, to a method and an apparatus for optimizing design based on performance evaluation of a gas diffusion layer of a fuel cell. The method includes: determining an overall porosity of the gas diffusion layer of the fuel cell according to production requirements, and obtaining a plurality of porosity structures with the overall porosity; obtaining performance evaluation indexes of the gas diffusion layer of the fuel cell, and constructing a performance evaluation system for the gas diffusion layer of the fuel cell; calculating, with reference to evaluation functions and index weight ratios, performance comprehensive scores of the plurality of porosity structures in the performance evaluation system of the gas diffusion layer of the fuel cell; determining an optimal design scheme in the plurality of porosity structures according to the performance comprehensive scores.
Resumen de: US2025316737A1
A fuel cell management system is disclosed herein. The fuel cell management system comprises: a first arrangement of fuel cells configured to provide a first voltage and a first current, where the first arrangement includes at least two fuel cells connected in series; a second arrangement of fuel cells configured to provide a second voltage and a second current, where the second arrangement includes at least two fuel cells connected in parallel; a plurality of switches coupled to fuel cells of the first arrangement and the second arrangement; and a control circuit configured to activate different switches of the plurality of switches to connect an output node of the fuel cell management system to one of a plurality of arrangements of fuel cells, where the plurality of arrangements of fuel cells includes the first arrangement and the second arrangement.
Resumen de: US2025316733A1
The invention relates to a method for starting a compressor assembly of a fuel cell system, the compressor assembly comprising an electrically operable first compressor and a downstream second compressor, which is coupled, by means of a rotor, to a turbine disposed in a cathode path of the fuel cell system, and the method comprising the steps of starting the first compressor and accelerating the first compressor to a first rotational speed at least corresponding to an idling rotational speed of the first compressor, selecting a first rotational speed gradient from a first and a second rotational speed gradient value, wherein the first rotational speed gradient value exceeds the second rotational speed gradient value, accelerating the first compressor from the first rotational speed to a second rotational speed with the first rotational speed gradient, examining, during the acceleration to the second rotational speed, whether the rotor rotates freely or whether the rotor is blocked, accelerating the first compressor to a maximum starting rotational speed by means of a second rotational speed gradient if the rotor rotates freely, or maintaining the second rotational speed, examining the rotation again and accelerating the first compressor to the maximum starting rotational speed if the rotor rotates freely, wherein the first rotational speed gradient value is selected from environmental and operating parameters of the fuel cell system if it is more probable that a rotor of the
Resumen de: US2025316736A1
A method for preparing a new polyelectrolyte multilayer coated proton-exchange membrane has been developed for electrolysis and fuel cell applications. The method comprises: applying a polyelectrolyte multilayer coating to a surface of a cation exchange membrane, the polyelectrolyte multilayer coating comprising alternating layers of a polycation polymer and a polyanion polymer to form the polyelectrolyte multilayer coated proton-exchange membrane and optionally treating the polyelectrolyte multilayer coated proton-exchange membrane in an acidic solution. The polycation polymer layer is in contact with the cation exchange membrane.
Resumen de: US2025316730A1
A fuel cell includes a heat exchanger loop configured to circulate a heat exchanger fluid from the compressed cathode air feed to the fuel cell to pre-heat the fuel cell during fuel cell start up. Also disclosed is a fuel cell including a humidifier mated to inlet and outlet ports of the fuel cell stack. Also disclosed is a fuel cell system having audio, image, or strain sensors external to the fuel cell surface, configured for detecting a change in the external surface of the fuel cell indicative of a fault condition.
Resumen de: US2025316729A1
A fuel cell system capable of defreezing a dedicated component by guiding a coolant via a coolant branch line from a fuel cell stack to the dedicated component which may be a water separator, an exhaust water pipe, a valve, a water tank, or a combination thereof. Also a vehicle comprising such fuel cell system.
Resumen de: US2025316734A1
A fuel cell system is introduced. The fuel cell system may comprise a fuel cell stack, and a controller configured to determine a dew point of gas flowing in the fuel cell stack, determine, based on the determined dew point and an operating temperature of the fuel cell stack, a change rate of an amount of hydrogen crossover, and control, based on a target operating temperature, the operating temperature of the fuel cell stack, wherein the target operating temperature is changed based on the determined change rate.
Resumen de: US2025316728A1
A duct assembly includes a metallic flange having a first side, a second side opposite the first side, and a projection extending from the second side. An inner surface of the metallic flange extends between the first side and an end of the projection distal from the second side of the metallic flange to define a flange passageway. The first side of the metallic flange is configured to join to a metallic mounting surface of a vehicular component when the duct assembly is mounted at the vehicular component. The duct assembly also includes a plastic duct received at the projection of the metallic flange and having a duct passageway in fluid communication with the flange passageway. The duct passageway is configured to fluidly communicate with the vehicular component via the flange passageway when the duct assembly is mounted at the vehicular component.
Resumen de: US2025316732A1
A radiator of a fuel cell system may include plurality of fans mounted on a surface of the radiator, and an exhaust inlet through which fuel cell stack exhaust of the fuel cell system passes through the radiator. A first fan of the radiator may be configured for discharge of fuel cell stack exhaust, and operation of the first fan is controllable based on at least one parameter associated with the discharge of the fuel cell stack exhaust. A second fan of the radiator may be configured for cooling, and operation of the second fan is controllable based on at least a temperature of the fuel cell system. A controller may be configured to control the operation of the first fan based on whether the at least one parameter satisfies an exhaust discharging criteria.
Resumen de: US2025316727A1
A fuel cell system, in particular for a vehicle, includes at least one fuel cell having an anode region to be fed with hydrogen-containing anode gas at an anode inlet region, a cathode region to be fed with oxygen-containing cathode gas at a cathode inlet region, an anode outlet region for releasing anode offgas, and a cathode outlet region for releasing cathode offgas, and also a buffer store for receiving anode offgas from the anode outlet region.
Resumen de: US2025316726A1
A fuel cell system includes a fuel cell stack, a drain valve connected to a side of an anode of the fuel cell stack, and a controller. The controller is configured to determine a drained water amount at the anode side of the fuel cell stack according to opening of the drain valve, and to control a hydrogen supply pressure supplied to the fuel cell stack by activating different pressure control functions in accordance with a result of comparison between the drained water amount and a predetermined required drain amount.
Resumen de: US2025316725A1
A system includes a first fan configured to dissipate excess heat generated during electrochemical reactions that occur within a fuel cell stack of a fuel cell system and to direct exhaust air of the fuel cell system. A first air shroud surrounds the first fan, and the first air shroud includes a hinged door. The hinged door is configured to divert exhaust air from the first fan to an inlet of the fuel cell stack to keep an inlet air temperature of the fuel cell stack above a predetermined temperature level.
Resumen de: US2025316723A1
A fuel cell stack includes multiple stacked unit cells. Each unit cell includes a first separator, a second separator, and a power generation portion sandwiched by the first separator and the second separator. A flow passage and a gasket are arranged between the first separator of a first unit cell and the second separator of a second unit cell. The gasket surrounds a supply manifold, the flow passage, and a discharge manifold. The gasket includes an annular body and a guide projection. The first separator of the first unit cell includes at least one first rib located adjacent to an inner peripheral side of the body. The second separator of the second unit cell includes at least one second rib located adjacent to the inner peripheral side of the body. The first rib and the second rib project so as to contact each other and extend to intersect each other.
Resumen de: US2025316722A1
A plate arrangement for an electrochemical cell, in particular a fuel cell, includes a lattice for a sandwich-like arrangement between a first plate lying in a base plane and a second plate parallel thereto, and is designed as an expanded metal. The plate arrangement a plurality of nodes and webs that connect the nodes, Rows of nodes are formed which run parallel to one another in a plan view of the lattice and define a longitudinal direction. All nodes have a planar, bent shape with a bending line that is oriented transversely to the longitudinal direction and separates two node sections from one another. At least in a subset of the nodes, one of the node sections is arranged at least approximately parallel to the plates.
Resumen de: US2025316724A1
A datum rail for a fuel cell stack system including a body extending along a longitudinal axis, including a first end, a second end opposite the first end, a channel extending between the first end and the second end, and one or more through holes extending through the body with respect to the longitudinal axis. The datum rail further including at least one rod arranged in each of the one or more through holes and extending between the first end and the second end.
Resumen de: US2025316721A1
A method of forming a fuel cell layer includes forming a separator plate including a plurality of corrugations defining a plurality of anode flow channels at a first side of the separator plate and a plurality of cathode flow channels at a second side of the separator plate opposite the first side. A support layer is formed, including a porous portion and a solid portion at least partially surrounding the porous portion. The support layer and the separator plate are stacked, and the support layer is secured to the separator plate via a field-assisted sintering or spark plasma sintering (FAST) process.
Resumen de: US2025316720A1
A novel microfabricated Titanium-based porous transport layer (PTL) is described, for use in a hydrogen electrolytic fuel cell. The novel structure may have improved properties and enable improved utilization of the catalyst layer, which is a key metric for hydrogen fuel systems. The structure is intended to be used with a polymeric membrane and is disposed directly adjacent to the catalytic layer on the cathode side of the structure. The improved performance result from is three dimensions microfabricated design, which allows a large number of tightly controlled through hole structure, which increases the surface area available for the electrolytic reaction.
Resumen de: US2025316731A1
A method for calibrating a device for regulating the return flow (70) in a fuel cell system (1), the fuel cell system (1) having a fuel cell stack (101), an air path (10), an exhaust gas line (12) and a fuel line (20) with a recirculation circuit (50).The following method steps are carried out:a. setting a stationary load point of the fuel cell system (1);b. fixing the current drawn from the fuel cell stack (101);c. actuating a device for regulating the return flow (70) such that exhaust gas from the exhaust gas line (12) flows via a return flow line (66) into the air path (10);d. increasing the mass flow of exhaust gas flowing through the return flow line (66) by actuating the device for regulating the return flow (70) until a hydrogen concentration can be measured at a hydrogen sensor (64);e. defining the maximum permitted mass flow of exhaust gas through the return flow line (66) for the previously selected stationary load point.
Resumen de: US2025316715A1
A redox flow battery apparatus includes a membrane, a flow plate, and a porous electrode positioned between the membrane and the flow plate. The porous electrode has a surface configured for a reversible metal deposition thereon from a metal ion electrolyte solution flowing through the porous electrode. The porous electrode has a predefined porosity configured to allow the flowing of the metal ion electrolyte solution through the porous electrode.
Resumen de: US2025316719A1
The present invention provides a carbon-free electrocatalyst for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs). Described herein is a Pt decorated carbon-free catalyst with solid-state proton conducting zirconium phosphate (ZrP) as support material for PEMFC. The invention further describes the process for obtaining said Pt decorated conducting zirconium phosphate (ZrP) as support material as proton conductor. Also, the present invention relates to an efficient proton conductor which optimizes utilization of Pt- catalyst thereby improving the performance of the PEMFC. The carbon-free system alleviates the problem of carbon-corrosion leading to detachment of Pt-nanoparticles.
Resumen de: US2025316735A1
The current invention describes Anion exchange polymer electrolyte membrane (AEPEM) by simple UV-irradiation procedure using simple acrylate/methacrylate monomers/oligomers, with at least one of them possessing quaternary ammonium group to obtain a polymer membrane, which when soaked in 6 M KOH solution yield an AEPEM having OH— group incorporated into the polymer matrix having good ionic conductivity.
Resumen de: AU2024241128A1
This control system (163) controls a work machine (10) having a work device as well as being provided with a fuel cell (143) and a power storage device (144). The control system is provided with: a required power determination unit (174) that determines the magnitude of required power necessary for the operation of the work machine; and a fuel cell control unit (178) that controls the fuel cell, on the basis of the standard generation power of the fuel cell, the maximum dischargeable power of the power storage device, and the required power.
Resumen de: AU2024225709A1
The invention provides an electrolysis cell for alkaline water electrolysis as well as a method to make the cell with application of insert molding procedures. The invention also includes cells for PEM and AEM electrolysis and for fuel cell function. The cell is characterized by low material and manufacturing costs as well as the possibility to significantly scale up production while maintaining expected operational integrity. This invention enables one to apply insert-molding to manufacture the various types of specific cells and combine each type into stacks. In particular, the insert molding is applied to the membrane/ diaphragm and the separator plate of each cell. Cross flow and co-flow configurations are described.
Resumen de: DE102024121527A1
Eine Kanalanordnung umfasst einen Metallflansch, der eine erste Seite und eine der ersten Seite gegenüberliegende zweite Seite aufweist. Eine Öffnung ist an der ersten Seite des Metallflansches gebildet. Ein Kunststoffkanal erstreckt sich von der zweiten Seite des Metallflansches. Ein Durchgang des Kunststoffkanals steht in Fluidverbindung mit der Öffnung des Metallflansches. Die erste Seite des Metallflansches ist so konfiguriert, dass sie mit einer Metallmontagefläche einer Fahrzeugkomponente verbunden werden kann, und der Durchgang des Kunststoffkanals steht über die Öffnung des Metallflansches in Fluidverbindung mit der Fahrzeugkomponente, wenn die Kanalanordnung an der Fahrzeugkomponente montiert ist.
Resumen de: DE102024203187A1
Verfahren zum Laserbohren mit einer Laserbohranlage 1, wobei Bohrlöcher 4 an Bohrstellen 3 in einem Bereich eines Werkstücks 2 als Bohrstellenbereich gebohrt werden, wobei die Laserbohranlage 1 einen Laserstrahl 6 erzeugt, wobei die Laserbohranlage 1 ein Strahlformungssystem 7 zur Erzeugung und/oder zur Auslenkung von mindestens einem Laserstrahlprofil des Laserstrahls 6 aufweist, wobei das Strahlformungssystem 7 mehrere kohärente Einzellaserstrahlen zu dem Laserstrahl 6 kombiniert, wobei mindestens eines der Laserstrahlprofile als ein Bohrlaserstrahlprofil 9 ausgebildet ist, wobei das Bohrlaserstrahlprofil 9 mehrere, örtlich getrennte Bohrspots 11 zum Bohren der Bohrlöcher 4 in dem Bohrstellenbereich aufweist.
Resumen de: DE102024109485A1
Die vorliegende Erfindung betrifft eine Fluidreinigungsvorrichtung 10, insbesondere zum Abscheiden von Schadstoffe wie SO2oder NH3, aufweisend eine Konditionierungseinheit 20, die ausgebildet ist, die absolute Luftfeuchte des einströmenden Fluids und die relative Luftfeuchte durch Befeuchtung und/oder Temperaturregelung einzustellen, und eine der Konditionierungseinheit 20 nachgeordnete Filtereinheit 30, die ausgebildet ist, mittels eines adsorptiven und/oder katalytischen Filterelements ein Gemisch aus Wasser und Schadstoffen aus dem Fluid abzuscheiden. Ferner ist ein Brennstoffzellensystem 1 und ein Verfahren zum Reinigen eines Fluidstroms für eine Brennstoffzelle 70 umfasst.
Resumen de: DE102024109469A1
Die Erfindung betrifft ein Verfahren zur Herstellung eines Ausgangsmonomers, sowie ein Ausgangsmonomer. Ferner betrifft die Erfindung ein Verfahren zur Herstellung eines Polymers, sowie ein Polymer.
Resumen de: DE102024121495A1
Eine Leitungsbaugruppe umfasst einen Metallflansch mit einer ersten Seite, einer zweiten Seite gegenüber der ersten Seite und einem Vorsprung, der sich von der zweiten Seite aus erstreckt. Eine Innenfläche des Metallflansches erstreckt sich zwischen der ersten Seite und einem von der zweiten Seite des Metallflansches entfernten Ende des Vorsprungs, um einen Flanschdurchgang zu bilden. Die erste Seite des Metallflansches ist dazu ausgestaltet, sich beim Anbringen der Leitungsbaugruppe an einer Fahrzeugkomponente mit einer metallischen Anbringungsfläche der Fahrzeugkomponente zu verbinden. Die Leitungsbaugruppe umfasst auch eine Kunststoffleitung, die an dem Vorsprung des Metallflansches aufgenommen ist und einen Leitungsdurchgang aufweist, der mit dem Flanschdurchgang in Fluidverbindung steht. Der Leitungsdurchgang ist dazu ausgestaltet, über den Flanschdurchgang mit der Fahrzeugkomponente in Fluidverbindung zu stehen, wenn die Leitungsbaugruppe an der Fahrzeugkomponente angebracht ist.
Resumen de: DE102024203207A1
Verfahren zum Betreiben eines Brennstoffzellensystems (100) mit mindestens einem Brennstoffzellenstack (11) in dem ein Kathodenraum (K) angeordnet ist und mit einer Kathodenzuleitung (31), die in Strömungsrichtung in den Kathodenraum (K) mündet, mit einer Rezirkulationsleitung (34), die mit der Kathodenzuleitung (31) verbunden ist und in der ein Rezirkulations-Ventil (35) angeordnet ist, wobei während eines Trocknungsvorgangs des Brennstoffzellenstacks die Luftfeuchtigkeit im Kathodenraum K eingestellt wird, indem folgende Schritte mindestens einmal durchgeführt werden:a. Ermitteln einer aktuellen Luftfeuchtigkeit in der Kathodenzuleitung (31)b. Vergleichen der aktuellen Luftfeuchtigkeit mit mindestens einem Grenzwert, der eine Luftfeuchtigkeit beschreibtc. Mindestens anteiliges Öffnen des Rezirkulations-Ventils (35) über eine erste Zeitdauer, wenn die aktuelle Luftfeuchtigkeit kleiner oder gleich ist als der mindestens eine Grenzwert
Resumen de: DE102024203039A1
Elektrochemische Zelleneinheit (25) zur Wandlung elektrochemischer Energie in elektrische Energie als Brennstoffzelleneinheit (1) und/oder zur Wandlung elektrischer Energie in elektrochemische Energie als Elektrolysezelleneinheit (11) mit einem Zellenstack (3), der Zellenstack (3) umfassend gestapelt angeordnete elektrochemische Zellen (24) als Zellenstack (3), eine Stromplatte (45) zur Leitung von Strom, eine Endplatte (47), eine die Endplatte (47) von der Stromplatte (45) und den elektrochemischen Zellen (24) elektrisch isolierende Isolierplatte (46), wenigstens einen in dem Zellenstack (3) ausgebildeten Einleitungskanal (50) zur Leitung eines Prozessfluides in die elektrochemischen Zellen (24) und der Einleitungskanal (50) von Einleitungsöffnungen 48) in der Endplatte (47), der Isolierplatte (46) und der Stromplatte (45) gebildet ist, wenigstens einen in dem Zellenstack (3) ausgebildeten Ausleitungskanal (51) zur Leitung eines Prozessfluides aus den elektrochemischen Zellen (24) und der Ausleitungskanal (51) von Ausleitungsöffnungen (49) in der Endplatte (47), der Isolierplatte (46) und der Stromplatte (45) gebildet ist, wobei die Isolierplatte (46) an einem die wenigstens eine Einleitungsöffnung (48) und/oder die wenigstens eine Ausleitungsöffnung (49) begrenzenden je einen Prozessfluidbereich (53) andere Werkstoffeigenschaften aufweist als außerhalb dieses Prozessfluidbereiches (53) an einem Plattenbereich (52) der Isolierplatte (46).
Resumen de: DE102024109884A1
Die hier offenbarte Technologie betrifft erfindungsgemäß eine Leitungsvorrichtung (11) zum Leiten von Wasserstoff in einem Fahrzeug (100), wobei das Fahrzeug (100) ein Brennstoffzellensystem (10) mit einer Brennstoffzelle (12) und einem Druckbehälter (13) zum Speichern von Wasserstoff umfasst, aufweisend ein Gehäuse (21, 22, 23, 24) zur Installation im Fahrzeug (100) zum Bilden eines Gehäusevolumens an einer möglichen Wasserstoff-Leckagestelle (31, 32, 33, 34) des Brennstoffzellensystems (10) und eine Wasserstoffleitung (41, 42, 43, 44) mit einer Messöffnung (51, 52, 53, 54) zum Leiten von Wasserstoff, der aus der Wasserstoff-Leckagestelle (31, 32, 33, 34) in das Gehäusevolumen gelangt, weg vom Gehäuse (21, 22, 23, 24) und hin zur Messöffnung (51, 52, 53, 54). Die erfindungsgemäße Technologie betrifft ferner ein Fahrzeug (100) mit der Leitungsvorrichtung (11) sowie ein Verfahren zum Herstellen des Fahrzeugs (100).
Resumen de: DE102024109374A1
Ein Brennstoffzellensystem, insbesondere für ein Fahrzeug, umfasst wenigstens eine Brennstoffzelle (12) mit einem an einem Anoden-Einlassbereich (20) mit Wasserstoff enthaltendem Anodengas zu speisenden Anodenbereich (14), einem an einem Kathoden-Einlassbereich (24) mit Sauerstoff enthaltendem Kathodengas zu speisenden Kathodenbereich (16), einem Anoden-Auslassbereich (32) zur Abgabe von Anodenabgas und einem Kathoden-Auslassbereich (38) zur Abgabe von Kathodenabgas, sowie einen Pufferspeicher (48) zur Aufnahme von Anodenabgas von dem Anoden-Auslassbereich (32).
Resumen de: WO2025210347A1
A catalyst-coated membrane for a water electrolyser is provided. The catalyst-coated membrane comprises a polymer electrolyte membrane with an anode catalyst layer on a first side of the membrane. The anode catalyst layer comprises an oxygen evolution reaction catalyst containing at least one noble metal at a loading of the oxygen evolution reaction catalyst, based on the noble metal content, of less than or equal to 0.6 mg/cm2. The polymer electrolyte membrane comprises a membrane layer comprising dispersed platinum group metal-containing nanoparticles, a nanoparticle stabilising agent and an ion-conducting polymer.
Resumen de: WO2025210155A1
Proposed is an electrochemical cell unit (25) for converting electrochemical energy into electrical energy as a fuel cell unit (1) and/or for converting electrical energy into electrochemical energy as an electrolysis cell unit (11), the electrochemical cell unit having: a cell stack (3), the cell stack (3) comprising stacked electrochemical cells (24) as a cell stack (3); a current plate (45) for conducting current; an end plate (47); an insulating plate (46) which electrically insulates the end plate (47) from the current plate (45) and the electrochemical cells (24); at least one inlet channel (50), formed in the cell stack (3), for conducting a process fluid into the electrochemical cells (24), the inlet channel (50) being formed by inlet openings (48) in the end plate (47), in the insulating plate (46) and in the current plate (45); and at least one outlet channel (51), formed in the cell stack (3), for conducting a process fluid out of the electrochemical cells (24), the outlet channel (51) being formed by outlet openings (49) in the end plate (47), in the insulating plate (46) and in the current plate (45), wherein the insulating plate (46) has different material properties in a process fluid region (53) delimiting the at least one inlet opening (48) and/or in a process fluid region (53) delimiting the at least one outlet opening (49) than in a plate region (52) of the insulating plate (46) outside said process fluid region/s (53).
Resumen de: WO2025210022A1
The invention relates to a fuel cell system (100) having: at least one fuel cell stack (101); an air path (10), air from the surroundings reaching the fuel cell via the air path (10); an exhaust gas line (12); a fuel line (20), fuel being transported to the fuel cell stack (101) via the fuel line (20); and a circulation line (50), the circulation line (50) having a purge line (40). A device (1) for determining the hydrogen concentration of an exhaust gas having a dosing element (4) is located in the exhaust gas line.
Resumen de: WO2025209995A1
The invention relates to a high-temperature electrolyser comprising corrugated interconnectors (4) equipped with reinforcing rods (30). The invention also relates to the associated production method.
Resumen de: DE102025112631A1
Ein Brennstoffzellenstapel weist mehrere gestapelte Einheitszellen auf. Jede Einheitszelle weist einen ersten Separator, einen zweiten Separator und einen Stromerzeugungsabschnitt auf, der von dem ersten Separator und dem zweiten Separator in die Mitte genommen wird. Zwischen dem ersten Separator einer ersten Einheitszelle und dem zweiten Separator einer zweiten Einheitszelle sind ein Strömungsdurchlass und eine Dichtung angeordnet. Die Dichtung umgibt einen Zufuhrverteiler, den Strömungsdurchlass und einen Abgabeverteiler. Die Dichtung weist einen ringförmigen Körper und einen Führungsvorsprung auf. Der erste Separator der ersten Einheitszelle weist mindestens eine erste Rippe auf, die die sich neben einer Innenumfangsseite des Körpers befindet. Der zweite Separator der zweiten Einheitszelle weist mindestens eine zweite Rippe auf, die sich neben der Innenumfangsseite des Körpers befindet. Die erste Rippe und die zweite Rippe stehen so vor, dass sie sich gegenseitig berühren, und verlaufen so, dass sie sich gegenseitig überschneiden.
Resumen de: DE102024109815A1
Die hier offenbarte Technologie betrifft erfindungsgemäß eine Vorrichtung (103) zur Überwachung eines Brennstoff-Sensors (304) eines Brennstoffzellensystems (100), wobei der Brennstoff-Sensor (304) eingerichtet ist, Messwerte (404) in Bezug auf einen Anteil von Brennstoff (211) in dem Abgas des Brennstoffzellensystems (100) zu erfassen. Die Vorrichtung (103) ist eingerichtet, einen zeitlichen Verlauf (400) von Messwerten (404) des Brennstoff-Sensors (304) zu ermitteln, und ein oder mehrere Eigenschaften des zeitlichen Verlaufs (400) von Messwerten (404) zu ermitteln. Die Vorrichtung (103) ist ferner eingerichtet, auf Basis der ein oder mehreren Eigenschaften eine Beeinträchtigung des Brennstoff-Sensors (304) zu erkennen.
Resumen de: DE102024203139A1
Brennstoffzellensystem (100) mit mindestens einem Brennstoffzellenstack (101), einem Luftpfad (10), wobei über den Luftpfad (10) Luft aus der Umgebung zur Brennstoffzelle gelangt, einer Abgasleitung (12), einer Brennstoffleitung (20), wobei über die Brennstoffleitung (20) Brennstoff zum Brennstoffzellenstack (101) transportiert wird, und einer Zirkulationsleitung (50), wobei die Zirkulationsleitung (50) eine Purgeleitung (40) aufweist. In der Abgasleitung ist eine Vorrichtung (1) zur Bestimmung der Wasserstoff-Konzentration eines Abgases mit einem Dosierelement (4) angeordnet.
Resumen de: WO2025211071A1
Provided is a membrane electrode assembly for a fuel cell, the membrane electrode assembly being capable of maintaining high gas diffusibility without allowing generated water to accumulate. The membrane electrode assembly for a fuel cell comprises: a catalyst layer having a first main surface and a second main surface; a gas diffusion layer disposed on the first main surface side; and an electrolyte membrane disposed on the second main surface side. The gas diffusion layer contains an electroconductive material and a polymer resin. The electroconductive material contains a fibrous carbon material. The strength S1 required to peel the interface between the catalyst layer and the gas diffusion layer is 31.2-1000 N·cm-2.
Resumen de: GB2640063A
Provided is a solid electrochemical device comprising: a solid electrolyte which has a first main surface and a second main surface that is opposite from the first main surface; a first electrode which has a third main surface and a fourth main surface that is opposite from the third main surface and which is provided such that the third main surface faces the first main surface; a first current collector which has a fifth main surface and a sixth main surface that is opposite from the fifth main surface and which is provided such that the fifth main surface faces the fourth main surface; and a first interconnector which has a seventh main surface and which is provided such that the seventh main surface faces the sixth main surface, wherein the seventh main surface of the first interconnector is a flat surface, the first current collector includes a first porous metal body that has a three-dimensional network structure, and the fifth main surface has a plurality of first through-holes that are formed so as to extend along a first direction from the fifth main surface to the sixth main surface.
Resumen de: EP4629357A1
A life prediction method according to the present disclosure is a life prediction method for a field cell apparatus including power generation units each including a fuel cell. The life prediction method includes predicting a time when each of the power generation units of the fuel cell apparatus reaches an end of life, from a cumulative power generation time of the power generation unit of the fuel cell apparatus at which the power generation unit is determined to reach the end of life, and from a ratio of a number of the power generation units that generate power out of a total number of the power generation units of the fuel cell apparatus in a predetermined period.
Resumen de: EP4628525A1
L'invention concerne une composition de caoutchouc à base d'au moins un copolymère EPM ou un terpolymère EPDM, et un article en caoutchouc l'incorporant, tel qu'un joint d'étanchéité ou un tuyau (10) e.g. pour un circuit d'air, d'eau ou de refroidissement équipant une pile à combustible.La composition comprend :- une charge comprenant un noir de carbone et une charge inorganique lamellaire,- un système d'aide à la mise en œuvre,- un système plastifiant, et- un système de réticulation comprenant un peroxyde,dans laquelle la composition comprend, en fractions massiques :28-32 % du noir de carbone, lequel est choisi parmiles noirs de série ASTM N600 ou N700, etceux présentant une surface spécifique de 15-25 m<2>/g, un indice d'adsorption d'iode de 16-24 mg/g et un indice d'absorption de DBP de 90-110 mL/100 g,10-20 % de la charge inorganique lamellaire,1,0-6,0 % du système d'aide à la mise en œuvre, lequel comprend un agent de recouvrement du noir de carbone, et10-22 % du système plastifiant.
Resumen de: EP4629476A1
A hybrid fuel cell system (100) is disclosed. The hybrid fuel cell (100) comprises a fuel cell (102) adapted to supply power to a load (106). The hybrid fuel cell (100) further comprises an Electrical Air Compressor, EAC, unit (114) operatively coupled with the fuel cell (102). Also, the hybrid fuel cell (100) comprises an auxiliary power source (112) connected to the EAC unit (114) via a Direct Current to Alternating Current, DC-AC, converter (108). Furthermore, the hybrid fuel cell (100) comprises a converter circuit (110) configured to perform at least one of enable the auxiliary power source (112) to supplement the fuel cell (102) to provide collective power supply to a load (106) during the initialization phase of the fuel cell (102), enable the fuel cell (102) to provide either the input power supply or a supplement power supply to the EAC unit (114) during an operational phase of the fuel cell (102), or enable the fuel cell (102) to charge the auxiliary power source (112).
Resumen de: EP4628350A1
The present disclosure relates to a system (10) for a vehicle (1), the system comprising a hydrogen fuel storage system (20) for storing hydrogen fuel (22); a recirculation hydrogen fuel system (30) for transporting hydrogen fuel, the recirculation hydrogen fuel system having a fuel inlet (32) configured to be in fluid communication with the hydrogen fuel storage system and further a fuel return line (34) to the hydrogen fuel storage system, wherein the recirculation hydrogen fuel system is configured to be in fluid communication with a hydrogen fuel-consuming power source (40), the system further comprising an electrically powered compressor (50) disposed in the recirculation hydrogen fuel system; and wherein the electrically powered compressor is controllable to pressurize hydrogen fuel in the recirculation hydrogen fuel system in response to a determined need for dissipating energy.
Resumen de: EP4629353A1
The present disclosure relates to a fuel cell system (100) capable of defreezing a dedicated component (120) by guiding a coolant via a coolant branch line (125, 126) from a fuel cell stack 110 to the dedicated component (120). Further disclosed is a vehicle comprising such fuel cell system.
Resumen de: EP4629355A1
A fuel cell system (1) comprising- a cell exhaust (10e) for an exhaust mixture comprising water fluid (15) generated in a fuel cell (10) of the fuel cell system (1),- a cooling assembly (20) for cooling the fuel cell (10) using ambient air (25), and- a system exhaust (1e),wherein the fuel cell system (1) is configured to mix the exhaust mixture of the cell exhaust (10e) with heated air (25h) of the cooling assembly (20) to avoid or reduce water mist (5) being expelled from the system exhaust (1e). A method (100) of operating a fuel cell system.
Resumen de: CN120266304A
Embodiments described herein relate to electrochemical cell assemblies having structural members for applying compressive forces. In some aspects, an electrochemical cell assembly may include: a plurality of electrochemical cells arranged in a stack; a first planar sheet in contact with a first side of the stack; a second planar sheet in contact with a second side of the stack; a first structural member in compressive contact with the first planar sheet; and a second structural member in compressive contact with the second planar sheet, wherein the compressive contact between the first structural member and the first planar sheet and the compressive contact between the second structural member and the second planar sheet collectively provide structural stiffness to the electrochemical cell assembly.
Resumen de: WO2024115855A1
The present invention relates to a proton exchange membrane, a method for preparing said membrane, and the use of said membrane in fields requiring ion exchange, such as effluent purification and electrochemistry, or in the fields of energy. In particular, this membrane is used in the design of fuel cell membranes.
Resumen de: CN120266297A
The invention relates to a redox flow battery having at least one cell, the cell being composed of two half cells, each half cell having at least one half cell interior for accommodating an electrolyte, each cell being provided with at least one electrode and at least one membrane, and the half cells being arranged in a stacked manner, the half cells are each provided with at least one electrolyte inlet and/or at least one electrolyte outlet, and wherein the electrolyte inlet is connected to the electrolyte reservoir via at least one inlet line and the electrolyte outlet is connected to the electrolyte reservoir via at least one outlet line. The at least one lead-in line is divided into a lead-in sub-line, the at least one lead-out line is divided into a lead-out sub-line, the at least one lead-in sub-line and/or the at least one lead-out sub-line are/is assigned to the at least two half cells, and the lead-in sub-line and the lead-out sub-line are arranged outside the stacking surface of the half cells.
Resumen de: CN120092333A
A method of recycling a spent catalyst coated membrane, wherein the spent catalyst coated membrane comprises: a membrane comprising a membrane ionomer; a first catalyst layer disposed on one side of the membrane, the first catalyst layer comprising a first catalyst and a first catalyst layer ionomer; and a second catalyst layer disposed on opposite sides of the membrane, the second catalyst layer comprising a second catalyst and a second catalyst layer ionomer. The method is configured to recover the first catalyst layer ionomer and the second catalyst layer ionomer in addition to the catalyst materials and the membrane ionomer.
Resumen de: WO2024115576A1
An abiotic biofuel cell comprising an anodic compartment comprising an anodic chamber, wherein said anodic chamber contains a first electrolytic solution, comprising an alkaline solution and a biofuel dispersed in said alkaline solution, and an anodic-chamber electrode in contact with the first electrolytic solution; a cathodic compartment comprising a cathodic chamber, wherein said cathodic chamber contains a second electrolytic solution, comprising an electron acceptor, and a cathodic-chamber electrode in contact with said second electrolytic solution; and ion-selective means adapted to separate the anodic chamber and the cathodic chamber and to be in fluid communication therewith; a plant comprising this abiotic biofuel cell and an operating process thereof.
Resumen de: WO2024115236A1
The invention relates to a method and a device for ascertaining the conditions underlying a degradation of galvanic cell assemblies, in particular fuel cell assemblies (10), of a stationary or preferably mobile system using electrochemical impedance spectroscopy, wherein an electric input signal with a frequency which changes within an overall frequency range, in particular a frequency range between 10 mHz and 100 kHz, 200 kHz, or 300 kHz, is applied to the galvanic cell assembly, in particular the fuel cell assembly, and an electric output signal which is produced on the output side of the cell assembly in response thereto is measured with respect to amplitude and frequency and is analyzed using a comparison with previously captured reference values. Improved application possibilities for the method and the device are achieved on the basis of the electrochemical impedance spectroscopy in that the electric output signal is measured only in mutually spaced frequency bands (22) about specific frequency points (21) within the overall frequency range on which the measurement is based, and the analysis is based on the output signal.
Resumen de: WO2024115506A1
The present invention relates to a solid oxide cell (SOC) stack made of single repeating units (SRU), each of which comprising: - a ceramic cell with a corrugated membrane and a sealing frame with gas distribution holes and channels, and - a flat metallic interconnect.
Resumen de: MX2025005376A
The present invention relates to compositions with low electrical conductivity which comprise a hydroxylamine-containing molecule in combination with a yellow metal corrosion inhibitor such as a triazole, wherein the weight ratio of the yellow metal corrosion inhibitor to the hydroxylamine- containing molecule is from 1 :20 to 20:1; and wherein the composition has an electrical conductivity at 25 °C of less than 200 Î1⁄4S/cm. These compositions can effectively provide ferrous metal corrosion inhibition in heat-transfer fluids at low electrical conductivity and maintain a low electrical conductivity which does not alter substantially with aging. They are thus particularly useful as heat-transfer fluids, for example in fuel cells or battery electric vehicles. The invention further relates to methods for the preparation of said compositions, and to uses employing said compositions.
Resumen de: MX2025005376A
The present invention relates to compositions with low electrical conductivity which comprise a hydroxylamine-containing molecule in combination with a yellow metal corrosion inhibitor such as a triazole, wherein the weight ratio of the yellow metal corrosion inhibitor to the hydroxylamine- containing molecule is from 1 :20 to 20:1; and wherein the composition has an electrical conductivity at 25 °C of less than 200 Î1⁄4S/cm. These compositions can effectively provide ferrous metal corrosion inhibition in heat-transfer fluids at low electrical conductivity and maintain a low electrical conductivity which does not alter substantially with aging. They are thus particularly useful as heat-transfer fluids, for example in fuel cells or battery electric vehicles. The invention further relates to methods for the preparation of said compositions, and to uses employing said compositions.
Resumen de: WO2024115222A1
The invention relates to a test system (10a; 10b; 10c) for characterising solid oxide cells, preferably at temperatures between 500°C and 850°C, comprising at least one gas control unit (12a; 12b; 12c) for forming a homogeneous fuel gas mixture for the solid oxide cells, at least one fuel gas mixture line (16a; 16b), at least one hydrogen gas line (18a; 18b), and in particular at least one oxygen gas line (20a; 20b), wherein the at least one gas control unit (12a; 12b; 12c) has at least three stack layers (22a; 22b; 22c), at least one hydration unit (24a; 24b) which is directly gas-conductingly connected to the at least one hydrogen gas line (18a; 18b) and/or to the at least one oxygen gas line (20a; 20b) for the humidification of the homogeneous gas mixture and which is arranged in a hydration layer (26a; 26b) of the at least three stack layers (22a; 22b; 22c), at least one mixing chamber (28a; 28b) that is directly gas-conductingly connected to the fuel gas mixture line (16a; 16b) and the hydration unit (24a; 24b), which is designed to form the homogenous gas mixture and which is arranged in a mixing layer (30a; 30b) of the at least three stack layers (22a; 22b; 22c), and at least one test station (32a, 36a, 38a, 38a'; 32b, 36b, 38b, 38b'; 32c, 36c, 38c) for a solid oxide cell, which is arranged in a test layer (34a; 34b; 34c) of the at least three stack layers (22a; 22b; 22c). According to the invention, the gas control unit (12a; 12b; 12c) has at least one other test st
Resumen de: CN120303797A
The present invention relates to a gas diffusion layer for a fuel cell, comprising a microporous layer with a polymeric binder which is free of fluorine or has a lower proportion of fluorine-containing polymer compared to conventional binders, a gas diffusion layer obtainable using the method, and a method for producing a gas diffusion layer for a fuel cell, the gas diffusion layer comprising a microporous layer comprising a microporous layer having a polymeric binder which is free of fluorine or has a lower proportion of fluorine-containing polymer compared to conventional binders. And a fuel cell comprising such a gas diffusion layer.
Resumen de: CN120303796A
The invention relates to a bipolar plate (10) for a single cell (11) of an electrochemical energy converter (12), comprising a first flow structure (13) and a second flow structure (14) adjacent to the first flow structure (13), the first and the second flow structure (14) being arranged on one side of the bipolar plate (10), the first flow structure (13) being designed to be used for connecting the first flow structure (13) to the second flow structure (14), and the second flow structure (14) being designed to be used for connecting the first flow structure (13) to the second flow structure (14). The medium is distributed along a first longitudinal direction (X1) of the bipolar plate (10), and wherein the second flow structure (14) is designed to distribute the medium from the first flow structure (13) in a second longitudinal direction (X2) and/or a transverse direction (Y) of the bipolar plate (10).
Resumen de: WO2024114882A1
A method for controlling a cooling system (110) of a power assembly (102) comprising a fuel cell unit (106) and an electric energy storage system (104), the cooling system being controllable to cool the fuel cell unit to a first temperature at which the fuel cell unit can generate power at a first power level, and at which the electric energy storage system delivers output power when the power request is above the first power level. The method comprises: - predicting a power request for power delivery from the power assembly during a future time interval, - determining an electric energy level of the electric energy storage system, - determining if the power assembly will be unable to deliver output power according to the power request throughout the time interval, - controlling the cooling system to cool the fuel cell unit to a second temperature higher than the first temperature.
Resumen de: WO2024115949A1
A coolant expansion tank for a vehicle cooling system includes a coolant side having coolant. The tank further includes a first gas port on the coolant side for receiving first gas comprising gas bubbles separated from coolant in a first coolant circuit by a first gas separator, the first gas contributing to air pressure on the coolant in the coolant side. The tank further includes at least one second gas port on the coolant side for receiving second gas comprising gas bubbles separated from coolant in at least one second coolant circuit by at least one second gas separator, the second gas contributing to air pressure on the coolant in the coolant side. The tank further includes a pressurized air side having pressurized air to pressurize the coolant in the coolant side to a set pressure and has a port for receiving pressurized air from a pressure regulator.
Resumen de: WO2024115945A1
A coolant expansion tank for a vehicle cooling system includes a cooling fluid port for receiving cooling fluid for at least one coolant chamber on a coolant side of the coolant expansion tank. The tank further includes a transfer channel between the at least one coolant chamber and a pressured air side of the coolant expansion tank. The tank further includes the pressurized air side separated from the coolant side by a wall having the transfer channel, the pressurized air side providing pressurized air to the one or more coolant chambers via the transfer channel. The tank further includes a gas separation inlet on the coolant side for receiving gas separated from cooling fluid by a separator, the gas contributing to air pressure on the cooling fluid in the coolant side, wherein the excess pressure is released from the pressurized air side to a feed air transfer pipe.
Resumen de: EP4629356A1
Ein Brennstoffzellensystem, insbesondere für ein Fahrzeug, umfasst wenigstens eine Brennstoffzelle (12) mit einem an einem Anoden-Einlassbereich (20) mit Wasserstoff enthaltendem Anodengas zu speisenden Anodenbereich (14), einem an einem Kathoden-Einlassbereich (24) mit Sauerstoff enthaltendem Kathodengas zu speisenden Kathodenbereich (16), einem Anoden-Auslassbereich (32) zur Abgabe von Anodenabgas und einem Kathoden-Auslassbereich (38) zur Abgabe von Kathodenabgas, sowie einen Pufferspeicher (48) zur Aufnahme von Anodenabgas von dem Anoden-Auslassbereich (32).
Resumen de: EP4629352A1
A system and method of recreating ground conditions for a fuel cell system for use in a vehicle includes providing a fuel cell system, a compressor, a heat exchanger, a first turbine, a second turbine, and an electric motor drivingly connected to the compressor, the first turbine, and the second turbine along a common shaft. The method requires receiving air at an ambient pressure and temperature, compressing the air via the compressor, and discharging the compressed air into the fuel cell via the heat exchanger. The fuel cell generates an exhaust flow which is then expanded and cooled in the first turbine, heated via the heat exchanger, and then expanded and cooled in the second turbine and expelled at a pressure substantially equal to the ambient pressure.
Resumen de: EP4629354A1
The present invention relates to a cartridge for a fuel cell humidifier, and a fuel cell humidifier, the cartridge being provided in a fuel cell humidifier which uses a second gas to humidify a first gas which is to be supplied to a fuel cell stack, and the cartridge comprising: an inner case provided with respective openings in both ends thereof; and a hollow fiber membrane bundle received inside the inner case, wherein the hollow fiber membrane bundle comprises a plurality of hollow fiber membranes so as to satisfy at least one among a flow velocity condition for enabling a first gas to flow at a flow velocity of 1 m/s to 10 m/s, and a turbulence condition for enabling the first gas to flow at a Reynolds number of 50 to 400.
Resumen de: WO2024118783A1
An electrochemical cell (e.g., rechargeable solid state battery) includes a cathode, an anode, and a solid state electrolyte disposed between the cathode and the anode. The anode includes an anode material having a plurality of voids. In some embodiments, the cathode includes lithium, and the anode is formulated to cause lithium metal to be deposited in the plurality of voids during charging of the electrochemical cell. In some embodiments, the anode includes a constriction-susceptible surface that controls the interplay between lithiation and lithium plating. The electrochemical cells disclosed herein are advantageous as they provide improved battery cycling performance combined with excellent power and energy density.
Resumen de: EP4629351A1
An embodiment of the present disclosure provides a membrane electrode assembly including a first electrode portion, a second electrode portion, and an electrolyte membrane, wherein each electrode portion includes a catalyst layer and a gas diffusion layer, the catalyst layer includes platinum and a carbon support, and a platinum loading amount of the electrode portions is 1.5 to 5 mg/cm<sup>2</sup>.
Resumen de: EP4628208A1
Provided are a carbon catalyst that exhibits high catalytic activity, an electrode, and a battery. The carbon catalyst has a ratio L/La of an average carbon network plane size L, which is obtained by temperature programmed desorption analysis capable of heating to 1,600°C, to a crystallite size La, which is obtained from a diffraction peak in a vicinity of a diffraction angle (2θ) of 43° in an X-ray diffraction pattern obtained by powder X-ray diffraction using a CuKα ray, of 15 or more, and a BET specific surface area of 100 m<2>/g or more.
Resumen de: EP4628207A1
Provided are a carbon catalyst that exhibits high catalytic activity while effectively avoiding problems caused by iron, an electrode, and a battery. The carbon catalyst has a ratio L/La of an average carbon network plane size L, which is obtained by temperature programmed desorption analysis capable of heating to 1,600°C, to a crystallite size La, which is obtained from a diffraction peak in a vicinity of a diffraction angle (2θ) of 43° in an X-ray diffraction pattern obtained by powder X-ray diffraction using a CuKα ray, of 12 or more, and the carbon catalyst has an iron content of 3,000 ppm or less.
Resumen de: EP4629358A1
A fuel cell apparatus control method includes at least two of the steps of: reducing an output of a fuel cell apparatus that generates power using hydrogen from a hydrogen reservoir device upon a decrease in an amount of hydrogen in the hydrogen reservoir device; reducing the output of the fuel cell apparatus upon an increase in a temperature of a heating medium that collects exhaust heat from the fuel cell apparatus; and reducing the output of the fuel cell apparatus upon an increase in an air temperature inside or outside a housing of the fuel cell apparatus. In this control method, when the at least two of the steps are all executed, the output of the fuel cell apparatus is reduced by a largest one of amounts of output reduction of the fuel cell apparatus executed by the respective steps.
Resumen de: EP4629397A2
The present disclosure relates to organic electrolyte solutions including organic electrolytes (e.g., aromatic imides, ferrocenes, spiro fused compounds, or cyclopropenium compounds), and redox flow batteries and systems including the same.
Resumen de: CN120749186A
本发明涉及燃料电池技术领域,具体涉及一种利用石油伴生气的固体氧化物燃料电池发电优化方法,包括:实时采集SOFC发电系统发电参数,监测SOFC发电系统泵气工位状态信息,创建云端数据库,应用云端数据库对SOFC发电系统发电参数及泵气工位状态信息进行储存、处理和反馈处理,建立石油伴生气成份变动规律数据库,通过AI技术采取相应的气体重整解决方案,及时反馈和调控工艺参数,保证SOFC发电系统的高效率运行;本发明通过SOFC发电系统的发电参数及泵气工位状态信息的采集对比和控制,对SOFC发电系统进行运行风险判定,从而通过判定结果对SOFC发电系统进行智能控制,保证对SOFC发电系统的正常高效稳定的运行。
Resumen de: CN120738672A
本发明涉及海上可再生能源利用以及能量供给技术领域,公开了一种基于可逆固体氧化物电堆的离网海上综合能源供给系统,包括:绿氢制备子系统、绿色甲醇制备子系统和发电子系统。绿氢制备子系统运行时向可逆固体氧化物电堆的氧电极供给吹扫气体,向燃料电极供给水,可电解水产生氢气。绿色甲醇制备子系统运行时向氧电极供给吹扫气体,向燃料电极输送水和二氧化碳,电解为氢气和一氧化碳,而后利用一氧化碳甲醇化反应制备甲醇。发电子系统运行时向氧电极供给富氧气体,向燃料电极输送氢气,可逆固体氧化物电堆利用氧气和氢气反应发电。本发明的这种基于可逆固体氧化物电堆的离网海上综合能源供给系统更加轻量化、紧凑化且甲醇制备效率更高。
Resumen de: CN223414105U
本申请提供了一种集中供压式氢燃料电池发电系统,包括发电单元、气路集中供压单元和水路集中供压单元;所述发电单元包括若干个用于发电的电堆模块;所述气路集中供压单元包括设置于供气总管路上的空压机,该空压机通过供气总管路连接若干条供气支路,所述供气支路上依次设置有气路开关阀、增湿器、气路背压阀和空气尾排管;所述水路集中供压单元包括设置于供水总管路上的膨胀水壶、水路循环泵和集水箱,该水路循环泵通过供水总管路连接若干条供水支路,所述供水支路上依次设置有水路开关阀、三通阀、PTC加热器和水路背压阀。本申请能够实现氢燃料电池发电系统中的空气路和水路的集中供压,降低设备成本和长期运行成本。
Resumen de: CN223414111U
本实用新型属于液流电池电堆的紧固装置领域,具体的说是一种可快速拆卸的液流电池电堆分节紧固组件,包括螺母套筒,所述螺母套筒的一端设置有左旋外螺纹外六角螺杆,所述螺母套筒的另一端设置有右旋外螺纹外六角螺杆;通过母套筒放在中间,保证螺母套筒中的左旋内螺纹,右旋内螺纹与左旋外螺纹外六角螺杆,右旋外螺纹外六角螺杆相对应,开始旋转螺母套筒进行拧紧工作,因为螺纹旋向的不同,所以只需将螺母套筒朝着一个方向旋转即可同时将左旋外螺纹外六角螺杆和右旋外螺纹外六角螺杆拧紧作业,大大减少了维修人员的工作量,同时也缩减了系统中电堆占用的空间;降低长螺杆带来的断裂风险,更降低了制造成本和修护更换成本。
Resumen de: CN223414100U
本实用新型提供了一种燃料电池,所述燃料电池中的第一构件和具有密封槽的第二构件之间设有密封结构,所述密封结构设在第一构件和具有密封槽的第二构件之间,密封结构包括能够设于密封槽内的结构主体,以及设于结构主体宽度方向至少一侧的限位凸起,限位凸起能够与密封槽的槽壁抵接,以限制结构主体在密封槽内的位移,结构主体高度方向的两端能够分别与第一构件和第二构件抵接,以密封第一构件和第二构件之间的间隙,所述第一构件为燃料电池上的分配头,所述第二构件为电堆前端板。本实用新型利于提高密封结构在密封槽内的安装效果,并防止结构主体在密封槽内出现倾倒、歪斜等问题,进而利于提高密封结构对第一构件和第二构件之间间隙的密封效果。
Resumen de: CN223414107U
一种燃料电池恒温控制系统,依次连接构成循环回路的电解液箱、循环泵、电池堆以及储热箱,且储热箱中设有散热管路、导热翅片和相变材料,相变材料布设于散热管路和导热翅片的外周;电解液通过散热管路及管路上的导热翅片将热量传导给相变材料;电池堆反应后的高温电解液通过管路流过储热箱,流出的电解液再流入电解液箱,并通过循环泵泵入电池堆,利用相变材料将热量收集并储存起来,既能保持燃料电池电解质温度恒定,又能减少对周围环境温度的影响。
Resumen de: CN223414103U
本实用新型提供了一种基于固态储氢的氢储能电站热量管理系统,变压整流装置及电化学储能装置与发电装置供电相连,电解槽的电源接口与变压整流装置的直流供电接口相连;气液处理器与电解槽的氢碱混合物、氧碱混合物及碱液接口分别相连;氢气纯化装置与气液处理器氢气接口相连;固态储氢装置与氢气纯化装置氢气接口相连,低温闭式循环冷却水与充氢换热器循环连接,闭式循环热水与放氢换热器循环连接;燃料电池发电装置与固态储氢装置氢气接口相连,闭式循环冷却水与燃料电池换热器循环连接。所提供的系统能够实现氢储能电站的制氢、燃料电池发电和停机热备等模式热量管理,提高运行能效。
Resumen de: FR3160818A1
« Procédé de fabrication d’un contact électrique en Lanthane Strontium Manganite sur un substrat » L’invention concerne un procédé de fabrication d’un contact électrique en Lanthane Strontium Manganite, dit LSM, sur un substrat. Le procédé comprend une étape de dépôt sans contact, sur ledit substrat, d’un motif ou de plusieurs motifs de LSM par écoulement ou projection d’une barbotine liquide ou pâteuse de LSM. Figure pour l’abrégé : Figure 1
Resumen de: FR3160699A1
La présente invention concerne la mise en œuvre de procédés de co-coulage et/ou de co-extrusion couplés à de l’inversion de phase. Plus précisément, la présente invention concerne un procédé de co-coulage et/ou de co-extrusion par inversion de phase comprenant les étapes suivantes :- une étape de mise en forme par co-coulage et/ou co-extrusion d’une solution polymérique chargée de poudre céramique et d’une eau gélifiée, et- une étape d’inversion de phase,les étapes de coulage ou d’extrusion et d’inversion de phase étant réalisées de manière simultanée. La présente invention concerne également une bande, de préférence bande céramique ou bande céramique métallique, obtenue par le procédé tel que défini précédemment. La présente invention concerne également un tube, de préférence tube céramique, obtenu par le procédé tel que défini précédemment. La présente invention concerne également l’utilisation du procédé tel que défini précédemment pour la fabrication de bandes, de préférence de bandes céramiques et/ou de bandes céramiques métalliques ou de tubes, de préférence de tubes céramiques. La présente invention concerne également l’utilisation du procédé tel que défini précédemment ou de la bande, de préférence de la bande de céramique, telle que définie précédemment, ou du tube, de préférence du tube céramique tel que défini précédemment, pour la fabrication de membranes, de préfére
Resumen de: FR3160823A1
L’invention concerne une boîte chaude (1) de stacks (2) d’électrolyse haute température réversible SOEC/SOFC, comportant une cuve (10) accueillant au moins deux stacks, une entrée (14) et une sortie (15) par laquelle des premier et second fluides (32) peuvent entrer et être évacués, ladite boîte chaude comportant en outre une première conduite d’amenée (6) d’un troisième fluide dans chacun desdites au moins deux stacks (2), qui s’étend depuis l’extérieur de ladite cuve jusqu’à un arbre central (60). La boîte chaude comprend des sous-conduites (61) de répartition dudit troisième fluide, qui s’étendent chacune depuis l’arbre central de distribution jusqu’à une entrée d’un stack, lesdits au moins deux stacks étant positionnés à égale distance dudit arbre central. La boîte chaude comprend également des canaux d’évacuation (62) qui s’étendent depuis le fond de chacun des stacks, jusqu’à une seconde conduite d’évacuation qui collecte un quatrième fluide et qui l’évacue hors de ladite cuve. Figure pour l’abrégé : Fig. 1
Resumen de: FR3160824A1
L’invention concerne une tige de guidage (200) pour la fabrication d’un système électrochimique (100) à oxyde solide, ledit système électrochimique comprenant un empilement (130) de dispositifs unitaires (170), chaque dispositif comportant au moins un interconnecteur (150), une cellule électrochimique (160) à oxyde solide et une entretoise (140) interposée entre ledit interconnecteur et un interconnecteur d’un dispositif adjacent, chaque interconnecteur et chaque entretoise présentant au moins une perforation (152, 142), de préférence au moins deux perforations, permettant le passage de ladite tige de guidage associée, afin de maintenir l’empilement dans une position prédéfinie, ladite fabrication comportant une étape de compression de l’empilement (130) obtenu lors de l’étape d’empilement, ladite tige de guidage étant constituée d’un assemblage d’un premier (210) et d’un second (220) tronçons, ledit assemblage étant réversible de manière à permettre la désolidarisation desdits tronçons à l’issue de l’étape de compression. L’invention concerne également la fabrication d’un système électrochimique. Figure 3
Resumen de: US2025300198A1
The fuel gas supply system includes a fuel tank that stores fuel gas, a fuel gas supply pipe that connects the fuel tank and a gas supply destination to which the fuel gas is supplied, an upstream strainer that is provided in the fuel gas supply pipe, and a downstream strainer that is entirely mesh-shaped and is provided in a fuel gas supply pipe that is downstream of the upstream strainer. The upstream strainer has a pocket portion having a mesh portion defined by a plurality of first openings and a wall portion having a plurality of second openings that are larger in size than the first openings. When the upstream strainer is viewed along the axial direction of the upstream strainer, the plurality of first openings and the plurality of second openings do not overlap.
Resumen de: US2025300195A1
The separator includes a plurality of grooves for evacuating from the gas diffusion layer in the fuel cell to form a plurality of gas flow paths, a plurality of ribs for separating a plurality of gas flow paths in contact with the gas diffusion layer, and at least one first groove for evacuating from the gas diffusion layer and communicating only with the first flow path and extending toward the second flow paths on a contact surface in contact with the gas diffusion layer of at least one rib for separating the adjacent first and second flow paths of the plurality of gas flow paths.
Resumen de: JP2025146326A
【課題】本発明は、出力密度を向上させることが可能な酸化物プロトン伝導型燃料電池セルを提供することを目的とする。【解決手段】本発明は、酸化物プロトン伝導型燃料電池セルであって、プロトン伝導性材料で形成されている電解質と、空気極と、前記電解質及び前記空気極の間に設けられた、厚さ10~600nmの緻密な薄膜層と、を備え、前記薄膜層は、ABO型のペロブスカイト型の酸化物であり、BサイトにSc、Sn、Mo、Y、Yb、及びMgからなる群より選択される1つ以上の元素を含有する酸化物材料(1)より形成されている、酸化物プロトン伝導型燃料電池セルである。【選択図】図2
Resumen de: JP2025144579A
【課題】水素の充填時および放出時における水素吸蔵合金タンクの温度管理を適正に行う。【解決手段】電動モータ5と、電動モータ5に供給される電力を生成する燃料電池7と、燃料電池7に供給される水素を蓄える水素吸蔵合金タンク8と、を備えてなる油圧ショベル1において、水素吸蔵合金タンク8を冷却または加熱する熱媒体が流れる熱媒体管路8Cと、水素吸蔵合金タンク8に水素が充填されるときに前記熱媒体を冷却するチラー21と、燃料電池7に水素吸蔵合金タンク8から水素が供給されるときに前記熱媒体を燃料電池7からから発生する熱により加熱する熱交換器16と、を備えている。【選択図】図3
Resumen de: JP2025146430A
【課題】従来の燃料電池や電解セルなどにおいて、蓄熱や温度の均一化が図られておらず、過剰な発熱あるいは吸熱反応による熱の低下などの問題が生じてしまうという課題があった。また、従来の電解セルでは劣化が大きく、長期的な利用に耐える安定性を実現することも課題となっていた。【解決手段】相変化材料を含む粒子状の蓄熱または均熱材を配置した、蓄熱または均熱機能を有する燃料電池/電解セル。【選択図】 図7
Resumen de: WO2025197228A1
This power supply system is provided with a fuel cell (11) and a secondary battery (10) as power supply sources. The power supply system comprises: a power distribution control unit (A) (12) for distributing the output power of each of the batteries in order to supply required power P1 to an electric load; an impedance acquisition unit (B) (13) for acquiring an impedance R1 at a plurality of frequencies for the fuel cell (11); and an arithmetic unit (C) for extracting a material transport resistance R2 of the fuel cell (11) on the basis of the specific impedance R1, and performing a specific calculation based on the magnitude of the resistance R2 to obtain power P2 to be supplied by the fuel cell (11) and power P3 to be supplied by the secondary battery (10). The power distribution control unit (A) controls the output of each of the batteries on the basis of the calculation result of the arithmetic unit (C).
Resumen de: EP4621889A1
A fuel cell separator including a passivation metal layer and a conductive carbon film stacked on a surface of an aluminum metal base material, in which the fuel cell separator includes an alloy layer including an aluminum metal of the aluminum metal base material and a passivation metal of the passivation metal layer at a bonding interface between the aluminum metal base material and the passivation metal layer.
Resumen de: US2025233174A1
A hydrogen powered generator includes at least one fuel cell, a power converter that receives a raw power from the at least one fuel cell and outputs a converted power; and a hydrogen storage assembly that supplies hydrogen to the at least one fuel cell. In one instance, the hydrogen storage assembly comprises a first hydrogen storage unit and a second hydrogen storage unit which each comprise a torus containing a metal alloy material that absorbs and releases hydrogen gas. In another instance, the hydrogen storage assembly comprises a first hydrogen storage unit and a second hydrogen storage unit which each comprise a storage volume defined by: an outer cylinder, an inner cylinder, a top flange attached to the inner cylinder, and a bottom flange attached to the inner cylinder, wherein the storage volume is configured to contain a metal alloy material that absorbs and releases hydrogen gas.
Resumen de: DE102025110552A1
Ein Stapelverteiler weist auf: eine erste Endplatte eines Paars von Endplatten, die ein Zelllaminat in einer Dickenrichtung zwischen diesen aufnehmen; und ein Rohrbauteil, das aus einem thermoplastischen Harz ausgebildet ist und an der ersten Endplatte angebracht ist. Die erste Endplatte weist auf: einen Plattenkörper, der aus einem Material mit hoher Festigkeit gebildet ist und ein Durchgangsloch aufweist, das in der Dickenrichtung durch diesen geht und in Verbindung mit einem Fluidströmungsloch des Zelllaminats steht; und einen Harzteil, der aus einem thermoplastischen Harz ausgebildet ist und mit dem Plattenkörper integriert ist. Der Harzteil weist einen Beschichtungsteil auf, der aufweist: einen röhrenförmigen Teil, der in Kontakt mit einer Innenumfangsfläche, die das Durchgangsloch in dem Plattenkörper festlegt, angeordnet ist; und einen Flanschteil, der auf einer Außenseite in der Dickenrichtung von einem äußeren Ende des Plattenkörpers in der Dickenrichtung freiliegt. Der Plattenkörper und der Beschichtungsteil weisen eine Begrenzungsstruktur zum Begrenzen einer Verformung des Flanschteils in der Dickenrichtung nach außen auf.
Resumen de: JP2025146504A
【課題】燃料電池装置に必要な水素を安定して供給しつつ高圧ガス容器内の水素ガスを効率よく使用できる燃料電池システムを提供する。【解決手段】燃料電池装置50に水素ガスを供給するための複数の高圧ガス容器1と、複数の減圧弁ユニット10と、低圧配管17と、ガスの供給を制御する制御装置40とを備え、更に、低圧配管17は分岐配管18と供給電磁弁15を備え、減圧弁ユニット10のそれぞれは分岐配管18に送る水素ガスを低圧状態に減圧する減圧弁と、複数の高圧ガス容器1の内圧を検出する圧力計20とを備え、制御装置40は、検出された内圧に基づき供給電磁弁15の開閉を制御し、複数の高圧ガス容器1のうち、少なくとも2つ以上の高圧ガス容器1から燃料電池装置50に水素ガスを供給する。【選択図】図1
Resumen de: JP2025146216A
【課題】燃料電池で生成された水の消費量を高めることができる建設機械を提供する。【解決手段】ショベルは、燃料電池29と、燃料電池29で生成された電力が供給される電気機器34と、電気機器34を用いて駆動される油圧機器33と、燃料電池29用の冷却水を冷却する空冷式の冷却器35Aと、油圧機器33の作動油を冷却する空冷式の冷却器35Bと、燃料電池29で生成された水を冷却器35Aへ散布する散水装置38Aと、燃料電池29で生成された水を冷却器35Bへ散布する散水装置38Bとを備える。【選択図】図3
Resumen de: US2025300196A1
A separator is configured to be stacked on a power generating unit and a frame, which is made of a plastic and surrounds a peripheral portion of the power generating unit, thereby forming a single cell of a fuel cell. The separator includes a through-hole configured to allow a reactant gas to flow in a thickness direction of the separator, a gas passage configured to allow the reactant gas to flow in a planar direction of the separator, and a rib that is configured to support the frame and surrounds the through-hole over an entire circumference. At least one groove-shaped connecting passage is formed in a top surface of the rib to connect the through-hole and the gas passage to each other. The depth of the connecting passage is less than the thickness of the rib.
Resumen de: JP2025146531A
【課題】アンモニアをより有効に使用する。【解決手段】バイオマス分離手段5により、バイオマスを、液体に溶解する溶解成分、及び、非溶解成分に分離し、バイオマス分離手段5で生成された、溶解成分が溶解した液体アンモニアを電解反応装置4の電解液とし、電解反応装置4で、溶解成分に含まれる有機物を電解して窒素含有化合物を得る。【選択図】図1
Resumen de: JP2025145922A
【課題】原燃料ブロアの動作異常の原因を診断できる異常診断システムを提供する。【解決手段】異常診断システムであって、燃料電池装置は、水利用系統の所定部位での回収水の電気伝導度を測定する電気伝導度測定器とを備え、記異常診断装置は、原燃料ブロアの出力が目標原燃料流量に応じた標準出力よりも所定値以上大きいという原燃料異常条件が満たされる場合、その後に行われる停止処理において、停止状態を第1停止期間よりも長い第2停止期間継続させ、停止状態を第2停止期間継続した後において電気伝導度測定器が測定する電気伝導度が所定の回収水異常条件を満たす場合、排熱回収用熱交換器において湯水が排出ガス流路に流入していると判定する。【選択図】図3
Resumen de: JP2025145923A
【課題】燃料ガスのリークという異常を診断し、その異常を解消できる異常診断システムを提供する。【解決手段】異常診断システムであって、燃料電池装置は、燃焼触媒部の温度を検出する触媒温度測定器を備え、異常診断装置は、触媒温度測定器が測定する温度が所定の温度上昇状態にあり且つ設定温度以上であるという燃焼触媒高温条件が満たされると共にセルスタックでの燃料利用率が第1設定値以上である場合、第1設定値を下限として燃料利用率を低下させる燃料利用率低下処理を燃料電池装置に行わせ、燃焼触媒高温条件が満たされると共に燃料利用率が第1設定値未満である場合、内側容器の内側空間の内部の温度を上昇させる昇温処理を燃料電池装置に行わせる。【選択図】図3
Resumen de: US2025300204A1
The fuel cell system may include a fuel cell, a hydrogen gas supply path for supplying hydrogen gas to an anode of the fuel cell, a pump for sending off-gas discharged from the anode of the fuel cell to the hydrogen gas supply path, a pressure sensor for measuring a pressure in the hydrogen gas supply path, and a control device. The control device may acquire the amplitude of the frequency component corresponding to the drive frequency of the pump from the time-series data of the measurement value by the pressure sensor, and determine that an abnormality has occurred in the pump when the acquired amplitude is lower than the threshold value.
Resumen de: CN119856308A
Embodiments herein relate to a monitoring system for a chemical filter for use with a fuel cell system. In one embodiment, a fuel cell chemical filter monitoring system (108) having a processing unit (214) and a sensor module (212) is included. The sensor module (212) may include one or more sensors. The sensor module (212) may be configured to interface with an air flow passage (210) of the fuel cell system (104) upstream of the chemical filter (212) and to detect an amount of a chemical compound in the air flow passage (210). The sensor module (212) may be operably connected to the processing unit (214). The processing unit (214) may be configured to track the total exposure of the chemical filter to the chemical compound. The processing unit (214) may be configured to estimate a remaining life of the chemical filter (212) based on the tracked total exposure of the chemical filter and data regarding the total capacity of the chemical filter. Other embodiments are also included herein.
Resumen de: CN120749190A
本发明涉及一种有机‑磁性协同调控的Cu/C复合电极铁铬液流电池,属于液流储能技术领域。本发明铁铬液流电池的电解液为有机‑磁性协同调控的铁铬电解液,利用有机添加剂稳定金属离子,利用磁性纳米颗粒在充放电电场及外加微磁场作用下调控界面反应环境,诱导离子通道重构,提升扩散速率与反应可逆性;电极为Cu/C复合电极材料,通过引入络合‑骨架协同碳源,即采用络合剂型碳源和骨架型碳源进行复合搭配,既可稳定电极中的铜离子,还可在碳化过程中有效形成包裹结构,提升铜纳米颗粒的分散性与稳定性,从而构建出“核壳型”Cu@C结构,实现电子快速迁移与反应位点暴露的协同优化,大幅提升电极反应性能与系统综合效率。
Resumen de: CN120737403A
本发明公开了一种磷酸掺杂三聚氰胺改性磺化聚醚醚酮复合膜的制备方法,所述制备方法将三聚氰胺接枝到SPEEK骨架上,利用三聚氰胺的氮杂环上的氮原子与磷酸(PA)和‑SO3H可以通过酸碱相互作用力产生离子交联;一方面增加SPEEK分子链间的交联度抑制质子交换膜的溶胀,改善其物理化学性能;另一方面酸性磷酸根离子与碱性芳香氮杂环‑NH2基团通过相互作用力形成丰富的酸碱对和氢键网络,将PA固定到改性SPEEK膜中,酸碱对和氢键网络能提供质子传输位点,有效提高质子的快速传导。
Resumen de: CN120749193A
本发明公开了一种液流电池电堆进出口结构、工装及加工方法,涉及液流电池技术领;该液流电池电堆进出口结构,包括端片FEF,端片FEF上对称设置有若干安装孔,安装孔上通过超声波焊接设置有一一对应的汇流嘴。本发明还提供了用于上述液流电池电堆进出口结构的超声波焊接工装和加工方法。本发明将液流电池电堆进出口结构作为模块化组件,可以提前进行生产加工,简化生产流程,提高电堆可靠性,降低故障风险。
Resumen de: CN223408835U
本实用新型公开了一种液流电池组装线用的电堆翻转机构,包括底架,底架的顶部固定连接有支撑座,支撑座的顶部固定连接有主料架,主料架的一侧设有电堆翻转座,主料架底部的两侧均固定连接有安装板,电堆翻转座的底部固定连接有旋转杆,旋转杆与安装板转动连接,主料架的一侧设有驱动机构,驱动机构包括固定外壳、安装在固定外壳内壁的主电机和设在固定外壳一侧的减速机,主电机的输出端连接有转轴,转轴的一端与减速机的输入端连接,减速机的输出端连接有输出轴,输出轴的一端固定连接有主动齿轮,本实用新型一种液流电池组装线用的电堆翻转机构,整个翻转机构便于自动对液流电池堆进行翻转处理,提高加工效率。
Resumen de: CN223414098U
本实用新型公开了一种钒电池的正极片及钒电池,涉及钒电池检修技术领域,包括钒电池正极片主体,所述钒电池正极片主体前后两端面的上端均安装有绝缘检修齿条,所述绝缘检修齿条与绝缘检修齿轮固定连接,所述钒电池正极片主体的上端设置有便捷取料凹槽,该装置通过安装绝缘检修齿条可以便于工作人员通过绝缘检修齿轮和绝缘检修板带动钒电池正极片主体移动,进而无需使工作人员手部伸入狭小的钒电池主体内部即可取出钒电池正极片主体,避免工作人员手部蹭到电解液,使工作人员可以轻松将钒电池正极片主体取出,降低钒电池正极片主体的取出难度,使钒电池正极片主体取出更加便捷。
Resumen de: CN223414102U
本申请涉及电池生产设备技术领域,尤其涉及一种测试系统。测试系统包括机架、第一集成件、转运装置以及第二集成件。机架设置有测试工位。第一集成件沿第一方向滑动设置于机架,并用于集成多个检测端口,第一集成件具有第一对接端。转运装置用于承载燃料电池发动机,转运装置能够运动至测试工位,燃料电池发动机具有与多个检测端口对应的多个管道口。第二集成件设置于转运装置,并用于集成燃料电池发动机的多个管道口,第二集成件具有能够与第一对接端对接的第二对接端。测试工位被配置为,当转运装置运动至测试工位时,第一对接端与第二对接端沿第一方向彼此相对。本申请提供的测试系统可以节省对接时间,提高了对接效率,从而提高了测试效率。
Resumen de: CN223414101U
本实用新型提供了一种燃料电池密封结构、单电池及电堆和燃料电池系统,本实用新型的燃料电池密封结构包括设于膜电极的边框与双极板之间的密封条。其中,膜电极的边框上设有限位槽,至少部分密封条设于限位槽内,并用于密封膜电极的边框与双极板之间的间隙。本实用新型所述的燃料电池密封结构,通过在膜电极的边框上设置限位槽,并使得至少部分密封条设于限位槽内,不仅可有效防止压装过程中密封条错位,而利于保证密封性能,利于保证脊对脊接触面积,而降低接触电阻,从而可保证电堆性能;同时,在组装过程中,也能够快速将密封条安装到限位槽内,可提高组装效率。
Resumen de: CN223414099U
本申请提供了一种全钒液流电池电堆框板密封结构,包括双极框、双极板和压框,双极板通过压框固定在双极框的第一侧上,压框与双极板围合成第一反应空间,第一反应空间用于通入电解液,双极框上设置有第一进液流道和第一排液流道,压框上设置有多个进液口和多个排液口,多个进液口分别与第一进液流道相连通,以使电解液经由多个进液口流入第一反应空间,多个排液口分别与第一排液流道相连通,以使第一反应空间内的电解液经由多个排液口流入第一排液流道,能够使电解液更加充分、均匀地与双极板接触,电池的化学反应能够更加充分地进行,从而提升了电池的容量和功率密度。
Resumen de: CN223414109U
本实用新型涉及一种燃料电池系统水泄漏检测装置,属于燃料电池技术领域。所述燃料电池系统水泄漏检测装置包括泄漏检测传感器、燃料电池、主控板、供水设备、净水设备及废水设备,所述供水设备、净水设备、燃料电池通过管道依次连接,所述净水设备的废水出口与所述废水设备的入口连接,所述供水设备、净水设备及废水设备位于所述泄漏检测传感器的上方,所述泄漏检测传感器、燃料电池、供水设备及废水设备分别与所述主控板连接。本实用新型所述燃料电池系统水泄漏检测装置通过泄漏检测传感器检测燃料电池系统内部是否存在漏水现象,以便工作人员及时实施相应的措施解决漏水问题,避免水泄漏加重而导致燃料电池死机。
Resumen de: CN223414106U
本实用新型涉及燃料电池领域,具体来说是一种控温式气水分离器及具有该气水分离器的燃料电池总成,包括气水分离器本体,所述气水分离器本体包括气水分离器壳体,所述气水分离器壳体上设有气水分离器背板;所述气水分离器背板上设有风冷机构;所述风冷机构包括设置气水分离器背板上的散热风扇;本实用新型公开的气水分离器,通过盖板挡板与盖板外壁与内部氢气进行有效换热,同时外部盖板散热翅片通过风扇控制散热功率,通过温度传感器联合控制内部温度;通过以上措施可有效控制水分温度,在氢气湿度过高时降低温度分离更多水;需要更高的湿度时可减少散热使氢气水分更多进入燃料电池内。
Resumen de: CN223414110U
本实用新型的实施例提出一种紧凑型燃料电池热电联供系统。其中,所述的燃料电池热电联供系统包括集装箱体、隔板、燃料电池模块、电气模块、板换模块和散热模块。所述隔板设置在所述集装箱体内以将所述安装腔分隔成多个功能舱,多个所述功能舱包括相邻的燃电舱室和氢气阀路舱室;燃料电池模块包括燃料电池和氢气阀路系统,燃料电池设置在燃电舱室内,氢气阀路系统设置在氢气阀路舱室内;电气模块、板换模块和散热模块对应地设置在所述功能舱内,板换模块和散热模块并联地与燃料电池模块连接。可以理解的是,燃料电池和氢气阀路系统相邻设置。因此,根据本实用新型的实施例的燃料电池热电联供系统具有提高内部布局的紧凑度的优点。
Resumen de: CN223414104U
本实用新型提供一种燃料电池热管理系统、燃料电池及燃料电池汽车,所述燃料电池热管理系统包括:水泵,用于驱动冷却液在所述燃料电池热管理系统内循环流动;两个散热器,用于将流经至所述散热器的冷却液的热量与外界发生热交换;其中,所述散热器之间并联连接;流量调节装置,所述流量调节装置设置于所述第一管路或者第二管路,用于调节流入所述散热器的冷却液的流量;控制器,用于控制所述流量调节装置;所述控制器的信号输出端与所述流量调节装置连接。实现了可以根据实际需要调整冷却液在两个并联散热器之间的流量分配,提高散热效率;也可以为燃料电池提供最佳工作温度。
Resumen de: CN223414108U
本申请公开了一种测试阶段的多电堆固定式氢燃料发电系统,包括多个并联排列的单元电堆;空气供应总管道上连接有多个空气供应分支管道,多个空气供应分支管道分别连接在多个单元电堆的空气进口端,多个单元电堆的空气出口端分别连接有多个空气循环分支管道,多个空气循环分支管道连接在空气循环总管道上,在空气供应分支管道上设有歧管,歧管上安装有压力传感器;氢气供应总管道上连接有多个氢气供应分支管道,多个氢气供应分支管道分别连接在多个单元电堆的氢气进口端,多个单元电堆的氢气出口端分别连接有多个氢气循环分支管道;控制器与压力传感器电连接。本申请能够达到通过直观观测每个单元电堆的进气压力从而调控总管道的压力,进而提高发电效率的目的。
Resumen de: CN223414569U
本实用新型公开了一种风冷型氢燃料电池小型动力箱,包括箱体、锂电池、风冷型氢燃料电池电堆、中压传感器、低压传感器、进气电磁阀、排气电磁阀、控制器以及若干电线,箱体的右外侧设置有可拆卸的侧围板,箱体的右外侧与侧围板形成走线通道,锂电池、风冷型氢燃料电池电堆、中压传感器、低压传感器、进气电磁阀和排气电磁阀分别通过各自电线与控制器电连接,走线通道用于布置若干电线。本方案解决了现有的氢燃料电池箱中,通过在箱体内腔的中部设置走线通道以优化箱体内部的线缆布局,然而,这种布局方式会占据箱体内部一定的空间,进而限制了其他关键组件的布局和容量的问题。
Resumen de: WO2024175350A1
The invention relates to an electrochemical cell (10) having a coated membrane (14), with the top side (16) or bottom side (18) of which at least one porous transport structure (20, 22) is associated, said porous transport structure being surrounded by a frame (28, 30). The frame (28, 30) as such has an internal stress such that the frame transitions, during mounting, from a standing position (56) into a mounted position (58), or the frame (28, 30) comprises a number of spring elements (60) which are provided with a profile (64) and which move an inner wall (74) of the frame (28, 30) into sealing contact (72) with the at least one porous transport structure (20, 22) after the frame has been mounted. The invention also relates to the use of the electrochemical cell (10) in a PEM electrolyzer (82) or a PEM fuel cell.
Resumen de: CN120749189A
本发明提出了一种固态电解质填料、固态电解质的制备方法及固态电池,包括:将1、3‑二氨基胍盐酸盐加入到乙醇溶解,得到第一混合液;将硝基水杨醛加入到第一混合液中,得到第二混合液;对第二混合液进行固液分离,得到第一固态电解质填料。第一固态电解质填料,可以与聚氧化乙烯复合制备固态电解质,阴离子脱离后,阳离子的空位锚定TFSI‑,电荷转移至TFSI‑上,促进了C‑F键的断裂,形成氟化锂,同时填料包含的氯离子可与锂离子结合,形成氯化锂,继而生成复合相LiF‑LiCl的SEI,在同温度下比氟化锂含量更高的固态电解质产生的SEI层具有更低的锂沉积成核过电位、更高的对锂循环稳定性以及更长的锂金属全电池循环寿命。
Resumen de: CN120749181A
本发明涉及一种钒液流电池电解液除杂装置及方法,钒液流电池电解液除杂装置包括除杂电池、充放电电池、充放电仪、正极储液罐、负极储液罐,除杂电池和充放电电池均包括依次贴合的正极集流板、正极石墨板、正极塑胶垫片、离子交换膜、负极塑胶垫片、负极石墨板、负极集流板,正极塑胶垫片中部嵌设有正极电极,负极塑胶垫片中部嵌设有负极电极,正极石墨板和负极石墨板内均设有流道,正极石墨板的流道两端均通过管路接于正极储液罐,负极石墨板的流道两端均通过管路接于负极储液罐,正极集流板和负极集流板均电性接于充放电仪。本发明的有益效果在于:通过电沉积技术结合控制外加电压来控制电解液中金属的沉积,操作简单、安全环保且成本低。
Resumen de: CN120749196A
本发明涉及燃料电池电堆压装技术领域,具体公开了一种电堆压装装置及其压装方法,该电堆压装装置包括连接座和多个浮动压块,连接座设置有压力腔,以及与压力腔连通的接口,接口用于向压力腔输入压缩气体,压力腔包括连通腔室和与连通腔室连通的多个分腔室;多个浮动压块的一端一一对应地滑动设置于多个分腔室内,每个浮动压块的另一端伸出对应的分腔室且用于对待封装的燃料电池电堆施加压紧力,能够通过多个浮动压块对多个燃料电池电堆同步进行封装作业以保证作业效率,并且能够适应因零部件加工误差所导致的不同的燃料电池电堆的实际封装高度上存在差异的情况,还能够保证对各个燃料电池电堆的封装力大小相等,提升封装后成品的质量稳定性。
Resumen de: CN120737739A
本申请公开了一种用于SOFC电堆的玻璃胶组合物及其制备方法,属于固体氧化物燃料电池技术领域。本申请的用于SOFC电堆的玻璃胶组合物包括以下质量百分数组分:40%‑60%的SiO2、10%‑25%的B2O3、5%‑15%的Al2O3、5%‑15%的CaO、5%‑20%的BaO以及1%‑5%的ZrO2。本申请通过对配方进行调节,利用ZrO2抗Cr扩散(0.04μm)、BaO和CaO协同调节热膨胀系数(9*10‑6K‑1~11*10‑6K‑1)以及B2O3优化挥发性(<1%),同时在850℃下1000小时漏气率<0.01sccm/cm,显著降低了漏气率。本申请解决了SOFC密封中的热膨胀不匹配、挥发性和界面反应等问题,提升了电堆的长期稳定性,满足单电池及多电池堆的热膨胀匹配、化学稳定性和长期耐久性需求。
Resumen de: CN120749853A
本申请公开了一种燃料电池耦合液流电池的供能系统及其运行控制方法。其中供能系统包括基础供能单元、储能调峰单元、可再生能源发电单元、电解制氢单元、储氢单元、一级余热回收利用单元、二级余热回收利用单元以及储热单元。基础供能单元用于提供目标建筑群的基础电力负荷;储能调峰单元用于提供目标建筑群的波动电力负荷;一级余热回收利用单元接收燃料电池发电产生的一级余热,用于室内供暖或室内制冷;二级余热回收利用单元直接接收一级余热或者来自一级余热回收利用单元的二级余热,用于预热电解水和/或储氢单元。本申请通过设置有一级余热回收利用单元以及二级余热回收利用单元,将余热根据需求进行多级利用,余热利用率较高。
Resumen de: CN120742106A
本发明公开了基于G‑WD与优化TCN‑Transformer模型的PEMFC寿命预测方法,涉及质子交换膜燃料电池技术领域。本发明将以斯皮尔曼相关性分析的方法得到的相关性强的物理参数与每小时提取的数据中的时域、频域、熵、小波特征结合,除此之外还结合了优化小波分解后的重构数据作为多特征输入,使得TCN‑Transformer时序模型有更多维度的特征可以进行学习与训练,并且使用优化的TCN‑Transformer模型增强了预测性能,提供了一种PEMFC寿命预测的方法。
Resumen de: WO2024175345A1
The invention relates to a membrane/electrode assembly (1) for an electrochemical cell, in particular for a fuel cell or an electrolysis cell, having a membrane (2), which is arranged between two transporting layers (3, 4) and, in at least a peripheral region (5), between two frame parts (6.1, 6.2) of a frame (6), wherein the frame parts (6.1, 6.2) butt respectively in a butting region (7, 8) against the transporting layer (3, 4) arranged on the same side of the membrane (2) and wherein the frame parts (6.1, 6.2) are formed with different widths, and therefore the butting regions (7, 8) on the two sides of the membrane (2) are offset in relation to one another. According to the invention, in the wider frame part (6.2) a clearance (9) is formed on the membrane side, the clearance lying opposite the butting region (7) on the other side of the membrane (2). The invention also relates to an electrochemical cell with a membrane/electrode assembly (1) according to the invention.
Resumen de: CN120741209A
本发明涉及燃料电池安全性检测技术领域,具体为一种燃料电池检测装置,包括支撑架,所述支撑架顶端侧壁开设有第一槽口,所述第一槽口内侧壁设置有密封板,所述密封板底端侧壁开设有第一密封槽,所述支撑架顶端侧壁开设有第二密封槽,所述支撑架顶端放置有电池本体,本发明所述的一种燃料电池检测装置,通过振动机构与温度调试组件,可模拟不同的温度与细小振动,复现船舶行驶中的颠簸、高低温等场景,使检测结果更贴近实际应用需求,并且通过第三电机与角度传感器实现穿刺多角度调节,结合第一电动滑块与第三电动滑块,可精准测试电池表面任意区域在不同撞击方向下的抗损伤能力。
Resumen de: CN120735660A
一种氢燃料车辆的安全管控方法及装置,涉及燃料电池汽车安全监控领域,其中方法包括:当车辆处于氢气加注状态、密闭空间或高温环境时,调整预警等级表中相关预警参数对应的预警等级;预警等级表包括多种预警参数,每种预警参数根据数值范围被分为多个区间,每个区间对应一个预警等级;若当前时刻的车速和车辆行驶里程不满足预设条件时,分别调整预警等级表中相关预警参数对应的预警等级;采集车辆当前时刻各预警参数的数值,在调整后的预警等级表中根据各数值所属区间分别匹配到对应的预警等级,根据预设规则输出最终预警等级。本方法针对车辆的不同工作状态及外界环境进行差异化的安全控制,提高了氢燃料车辆在运营过程中的安全性。
Resumen de: CN120749177A
本公开属于催化剂技术领域,提供了一种铂纳米氧还原催化剂及其制备方法和应用,所述铂纳米氧还原催化剂的制备方法,包括以下步骤:将MOF衍生碳材料分散于去离子水和乙醇的混合溶液中,根据其Zeta电位的正负选择带负电荷或正电荷的含铂配位单元的化合物,在室温下搅拌,利用静电作用力使两者充分吸附,得到反应溶液;将所述反应溶液蒸干,然后于氢气还原性气氛中,在300~600℃下进行还原反应,得到所述铂纳米氧还原催化剂。所得催化剂应用于质子交换膜燃料电池,一方面微孔限域效应提升铂纳米颗粒的稳定性、避免全氟磺酸等高分子电解质的毒化,另一方面孔道相互联通有效增强传质、使得限域后的催化剂表现出优异的催化活性。
Resumen de: CN120749192A
本发明公开了一种有机小分子的电化学性能提升方法及液流电池,涉及有机液流电池技术领域。电化学性能提升方法包括:在电解池两侧设置磁场发生装置,将有机小分子加入电解池中,将电解池通电,并开启磁场发生装置,将磁场发生装置产生的磁场施加于电解池上;或者,在液流电池周边设置磁场发生装置,将有机小分子加入液流电池中,对液流电池进行充放电,并开启磁场发生装置,将磁场发生装置产生的磁场施加于液流电池上。本发明还提供了一种液流电池,包括电解液,电解液含有所述方法处理后的有机小分子。本发明的有益效果是利用磁场影响所述有机小分子的共价键得失电子而提升分子扩散速度,从而提升有机小分子的电化学性能。
Resumen de: CN120749188A
本发明涉及质子交换膜燃料电池技术领域,提出了一种磺化UiO‑66‑NH2‑OH改性磺化聚醚砜质子交换膜的制备方法,包括以下步骤:S1、将氯化锆、2‑氨基对苯二甲酸、2‑羟基对苯二甲酸、调节剂溶于极性溶剂中,进行溶剂热反应,得到UiO‑66‑NH2‑OH;S2、将UiO‑66‑NH2‑OH进行磺化反应,得到磺化UiO‑66‑NH2‑OH;S3、将聚醚砜进行磺化反应,得到磺化聚醚砜;S4、将磺化UiO‑66‑NH2‑OH和磺化聚醚砜,混合均匀,得到复合改性溶液;S5、将复合改性溶液滴于玻璃板上,刮涂,得到质子交换膜。通过上述技术方案,解决了相关技术中质子交换膜耐水解稳定性差、质子电导率差的问题。
Resumen de: CN120749180A
本发明公开了一种多供氢系统燃料电池叉车,包括带有电池仓的叉车本体,还包括上供氢系统和下供氢系统,上供氢系统设于叉车本体的平衡重上,下供氢系统设于叉车本体的电池仓内。本发明还公开了该多供氢系统燃料电池叉车的氢安全控制方法。本发明中上供氢系统和下供氢系统组成双供氢系统,为燃料电池叉车提供双倍续航,满足更长作业需求。本发明通过氢气紧急排放管、上氢浓度传感器及下氢浓度传感器等装置可及时发现氢气泄露隐患并有效防止氢气爆炸的风险,可辅助双供氢系统更安全地运行。
Resumen de: CN120749185A
本发明公开了一种氢燃料电池测试台架气体供给系统变压力控制方法,包括:判断是否进入“需求流量不变且需求压力改变”模式;上述步骤当判断为是,则计算得到质量流量控制器需要额外增加的质量流量;设定质量流量控制器目标流量为氢燃料电池电堆需求流量;判断是否“当前时刻氢燃料电池电堆实际入口压力已经偏离需求压力超过阈值”;上述步骤当判断为是,则计算背压阀开度修正值;判断“当前计时时间是否已经达到”,将背压阀开度调节恢复到以氢燃料电池电堆气体腔体需求入口压力为闭环控制目标。根据本发明,提高氢燃料电池电堆测试台架压力动态响应能力,同时减小氢燃料电池电堆实际气体流量变化幅度。
Resumen de: CN120737287A
本申请公开了一种基于聚芳基二噻吩哌啶的聚合物及其制备方法和应用,其中聚合物包括具有以下结构通式的聚合单元,,式中,Ar为芳基结构单体,R1和R2各自独立选自烷基或卤代烷基中的任意一种,用于提高聚合物电解质的离子电导率。
Resumen de: CN120749197A
本发明实施例公开了一种液流电池电堆和液流电池系统,液流电池电堆由多个液流电池单体串联组成,液流电池单体包括双极板与电极板一体化结构、电池隔膜与膜框一体化结构以及珠串帘式喷嘴阵列;珠串帘式喷嘴阵列设置于液流电池单体的正反应腔室内和/或负反应腔室内,且珠串帘式喷嘴阵列设置于膜框中间的空腔与电池隔膜的中心位置的膜反应区内;珠串帘式喷嘴阵列包括多个以预设距离排列成阵列的喷嘴单元,用于将电解液喷射至相应电极板和/或相应反应腔室的隔膜上进行反应。本发明通过设置珠串帘式喷嘴阵列将电解液在反应腔室内均匀喷射出来进行反应,解决了液流电池由于电解液流速分布不均所导致的界面传质效率低下且不均匀的技术问题。
Resumen de: CN120749187A
本发明公开的一种燃料电池过电位分布快速生成方法,属于质子交换膜燃料电池技术领域,具体为:利用燃料电池内部电流分布检测装置,检测得到电流密度分布;选取多个实验参数,通过调整各实验参数,实际检测得到不同工况下电流密度分布,构建样本集;同时测得稳态加载过程的整体过电位和整体电流密度,拟合Tafel方程;基于条件变分自编码器构建并训练电流密度分布生成模型;获取待测工况的实验参数,输入至训练后电流密度分布生成模型,生成待测工况的电流密度分布,根据Tafel方程计算过电位分布。本发明通过快速生成过电位分布,为探究燃料电池稳态下的分布状态提供技术支持,对燃料电池系统控制策略研究及故障诊断具有重要意义。
Resumen de: CN120749182A
本发明公开了一种燃料电池低气压性能预测模型的构建及性能分析的方法,应用于质子交换膜氢空燃料电池技术领域,包括:基于经验公式建立随海拔高度变化的空气压力和密度模型;根据能斯特方程和燃料电池极化方程得到燃料电池单体电压;利用质量守恒原理、电化学特性建立电堆阴极、阳极反应模型;建立基于MAP图的空压机模型和基于非线性喷嘴方程阴极出口管路模型。基于上述模型利用Simulink完成仿真环境,得到仿真结果数据,用于低气压环境下燃料电池性能的预测。本发明避免了盲目开展低气压试验造成的人力物力浪费以及对燃料电池系统可能造成的不可逆的损伤,为后续试验研究提供理论指导和预测分析依据,为燃料电池的低气压性能分析和设计提供有力支持。
Resumen de: CN120733745A
本发明公开了一种二氧化碳加氢催化剂的制备方法及其应用,属于加氢催化领域。本发明以钒渣为原料,通过钠化焙烧得到含硅、铬、钒的浸出液,加入铝源进行硅元素去除,同时加入有序介孔碳材料,将元素硅和铝转化为有序介孔复合氧化物,作为加氢催化剂载体使用;铟盐、铈盐、镍盐溶于乙醇与载体混合进行等体积浸渍得到加氢催化剂;去除硅的浸出液进行铬、钒分离,得到三氧化二铬和全钒液流电池电解液。该催化剂具有规则的孔道结构,有序介孔提供限域作用,有助于活性组分的分散与锚定,显著提高催化剂活性。
Resumen de: CN120749191A
本发明涉及储能用充放电电池技术领域,具体为一种无损恢复全钒液流电堆电极活性的方法,克服现有无损不拆解电堆恢复电极活性方法仍会缩短电堆寿命和缩小电解液储能容量的问题,具有如下过程,(一)、关闭全钒液流电池,将电堆内电解液排出;(二)、将全钒液流电池电堆的正极电解液进、出口与负极电解液进、出口连通至存有恢复液的储液容器,且使储液容器内的恢复液循环流过电堆的正极液室和循环流过电堆的负极液室,以实现正、负电极活性的无损恢复;所述恢复液中具有主恢复剂,所述主恢复剂为浓度3‑10mol/L的酸;所述恢复液的温度为30~50℃。
Resumen de: CN120749195A
本申请涉及一种燃料电池电堆端板进出口结构,适用于端板,包括变径端和等径端;所述变径端内设置有圆角梯形通孔,所述圆角梯形通孔贯穿所述变径端设置;所述等径端内设置有等径通孔,所述等径通孔贯穿所述等径端设置;所述圆角梯形通孔与所述等径通孔连通设置。本申请通过在端板进出口结构设置圆角梯形通孔,使得流体在进入电堆时变得更加平滑,有梯度的扩张,有效减少了压降,优化了燃料电池电堆流量分配的均匀性,能够有效保持燃料电池电堆运行时的稳定性,也有助于延长燃料电池电堆的使用寿命、提高物料的利用率。本申请结构简单,易于实现,成本较低,稳定性较好,能够很好的满足实际使用的需要。
Resumen de: CN120733589A
本发明公开了一种低氢气渗透质子交换膜及其制备方法与应用,包括增强层以及叠层设置于增强层一侧或两侧的消氢层;所述增强层包括增强基体和涂覆于增强基体上的含氟磺酸树脂;所述消氢层包括含氟磺酸树脂和锚定分散于其中的硅烷化试剂改性的Pt类添加剂。本发明采用具有锚定分散作用硅烷化试剂改性的Pt类添加剂并掺杂于含氟磺酸树脂中作为消氢层,硅烷化修饰改性提高了Pt类添加剂的分散均匀性和利用率,同时提高了其锚定稳定性;在增强层设置增强基体,提高膜的机械强度,实现“低氢气渗透‑高耐久性‑高机械性能”三合一的优异效果。
Resumen de: WO2024201049A1
The present invention provides a method of manufacturing catalyst-coated ion-conducting membrane for use in an electrochemical device such as a fuel cell or electrolyser. The method comprises providing an electrolyte membrane having a first face and a second face, the first face being disposed opposite to the second face. A first catalyst ink is deposited onto the first face of the electrolyte membrane to form a first wet catalyst layer and then dried to form a first catalyst layer on the first surface of the electrolyte membrane. The first catalyst ink comprises a first ion-conducting polymer; a first electrocatalyst; and a first dispersant. Subsequently, a second catalyst ink is deposited onto the second face of the electrolyte membrane to form a second wet catalyst layer and dried to form a second catalyst layer. The second catalyst ink comprises a second ion-conducting polymer; a second electrocatalyst; and a second dispersant. The first catalyst layer is subjected to a temperature A of 130°C or more before the second catalyst ink is deposited onto the second face of the electrolyte membrane and the second catalyst layer is subjected to a temperature B which is lower than the temperature A.
Resumen de: CN120736008A
本发明属于航空动力系统技术领域,具体是一种自散热航空氢电推进器。一种自散热航空氢电推进器,包括复合管道安装架,所述复合管道安装架将无刷电机、环形氢燃料电池、进气密封件、轴套、复合安装座连接为一体,螺旋桨安装在无刷电机上。所述复合安装座预留氢气管道接口与气源连接,复合安装座充当氢电推进器和飞行器机体的连接结构,同时内部中空,从飞行器机体接入的供氢管道,通过安装座预留氢气流道一,进入复合管道安装架,通入环形氢燃料电池中进行反应。功重比高、自散热、气管、电气线路高集成度、能量利用率高。
Resumen de: CN120735598A
本申请公开了一种车辆剩余氢气量确定方法及相关设备,涉及新能源车辆技术领域,该方法包括:获取目标车辆的车载储氢系统的工作状态和传感数据;根据工作状态,从多种氢气量计算策略中确定目标计算策略;根据目标计算策略,对压力数据和温度数据进行氢量估算处理,得到车载储氢系统的目标剩余氢气量。本申请通过基于车辆工作状态动态匹配氢气量计算策略,能够提升剩余氢气量估算的准确性与稳定性,有效保障整车运行安全并优化用户体验。
Resumen de: CN120749183A
本发明涉及氢燃料电池测试技术领域,具体涉及一种海拔环境模拟装置及海拔环境模拟控制方法。本申请实施例提供一种海拔环境模拟装置,其包括:燃料电池,其设于所述海拔环境舱;尾排管路,其舱内段管路与所述燃料电池连通,所述尾排管路的舱外段管路伸出所述海拔环境舱并与外部环境连通,所述尾排管路上设有压力传感器,所述压力传感器用于监测所述尾排管路内的压力参数;空压机,其与所述燃料电池和所述尾排管路均连通,所述空压机用于向所述舱内段管路输入压缩空气,以将所述舱内段管路内的冰晶吹扫至舱外段管路;加热器,其设于所述尾排管路上,且所述加热器位于所述海拔环境舱外,所述加热器用于将所述舱外段管路内的冰晶融化为液态水。
Resumen de: CN120749194A
本发明公开了一种燃料电池电堆及装置,其中电堆包括端板与绝缘板30,端板与绝缘板之间还设置有弹性材料层,弹性材料层选自具有碳骨架的复合材料层,复合材料层的碳骨架上还形成有挂胶层,挂胶层至少由具有乙烯基的降冰片烯衍生物与羟基封端聚二甲基硅氧烷共混得到的共混物涂布得到。
Resumen de: CN120745164A
本发明涉及燃料电池系统安全设计技术领域,具体为一种燃料电池系统绝缘阻值计算模型及计算方法;所述方法包括:通过获取冷却液管路长度与横截面积,设定冷却液电导率,采用阻值计算公式对各段管路进行阻值计算,并结合系统连接关系构建电气网络模型,实现整车或系统对地绝缘阻值的仿真计算;进一步对比仿真值与实测数据,优化模型精度。本发明适用于整车燃料电池系统的绝缘设计分析,可显著提升系统安全性预判能力,降低设计返工风险,具有良好的工程实用价值。
Resumen de: CN120735614A
本公开涉及一种车辆控制方法、装置、控制器及车辆,涉及燃料电池技术领域,可在燃料电池启动之前提前完成液氢瓶的自增压,为燃料电池的启动提供足够的压力。该车辆控制方法包括:在车辆上电且车辆处于Ready状态的情况下,获取所述车辆液氢瓶中的压力;在所述压力小于所述燃料电池的启动压力的情况下,增大所述液氢瓶中的压力,直至所述液氢瓶中的压力大于或等于所述启动压力。
Resumen de: WO2024133416A1
The invention relates to a method for a property-related arrangement of fuel cells (12) within a fuel cell stack (10), having the following steps: a) characterizing individual or multiple fuel cells (12) with respect to the susceptibility thereof to have different faults (30, 40, 50, 60, 70) prior to arranging same in the fuel cell stack (10); and b) arranging the fuel cells (12) characterized according to step a) within the fuel cell stack (10) in installation layers (80, 82, 84, 86) such that the effect of the faults (30, 40, 50, 60, 70) of fuel cells (12) ascertained according to step a) is minimized during the operation of the fuel cell stack (10).
Resumen de: WO2024175431A1
The invention relates to an electrochemical cell (10) of a stacked arrangement (52) of a PEM electrolyser or a PEM fuel cell having a plurality of electrochemical cells (10) which have porous transport structures (20, 22) on both sides of a coated membrane (14) on a cathode side (24) and an anode side (26) and which are sealed on both sides by means of seals (28, 30) within the stacked arrangement (52). Gaps (34) produced on both sides of the coated membrane (14) between the seals (28, 30) and the porous transport structures (20, 22) are at least partially filled by deformable sealing elements (4), in particular sealing noses or sealing lips, provided on the seals (28, 30). The invention also relates to the use of the electrochemical cell (10) in a stacked arrangement (52) of a PEM electrolyser or a PEM fuel cell.
Resumen de: CN120749184A
本发明公开了一种质子交换膜燃料电池多物理场耦合模型建立方法,包括以下步骤:三维全电池模型仿真计算得到第一阴极气体扩散层与第一阴极流道交界面处液态水与水蒸气流量占总水流量的质量分数,将第一阴极气体扩散层与第一阴极流道交界面处液态水与水蒸气流量占总水流量的质量分数作为边界条件对两相流模型进行仿真计算,得到第二阴极气体扩散层与第二阴极流道交界面处液态水体积分数;将第二阴极气体扩散层与第二阴极流道交界面处液态水体积分数用来修正三维全电池模型中的液压边界条件,得到修正后的三维全电池模型,再次进行仿真计算后得到修正后的两相流模型,能够提升模拟精度。
Resumen de: JP2025143938A
【課題】燃料ガス容量の増加と車両の小型化を両立しながらも、車両の重量バランスに優れ、車両の安定性が高い燃料電池車両を提供する。【解決手段】燃料電池車両1は、車両前方に設けられて搭乗者が乗車する乗車部7と、電力を発電する燃料電池21と、車両下方に配置されて燃料電池21で発電された電力を蓄電するバッテリー25と、バッテリー25から上方に、それぞれ間隔を開けて配置されて燃料電池21の燃料ガスを貯留する複数の燃料タンク23と、車両走行用の動力源となる電動機27と、燃料電池21およびバッテリー25の少なくともいずれか一方から供給される直流電力を交流電力に変換して電動機27を駆動させるインバーター29と、を備え、車両前後方向において、バッテリー25および複数の燃料タンク23は、乗車部7と、電動機27およびインバーター29との間に配置される。【選択図】 図1
Resumen de: JP2025143936A
【課題】後面後突の衝撃に対する燃料タンクの保護性を向上させることができる燃料電池車両を提供する。【解決手段】燃料電池車両1は、燃料電池15と、燃料電池15の燃料ガスを貯留する複数の燃料タンク17と、複数の燃料タンク17よりも車両後方に複数の燃料タンク17から間隔を空けて配置され、燃料電池15から排出される燃料ガスを空気で希釈する希釈装置19と、車両後方に設けられて、燃料電池15、複数の燃料タンク17および希釈装置19を収容する収容部13と、を備え、収容部13は、複数の燃料タンク17のうち1つの燃料タンク17と希釈装置19との間に設けられている保護フレーム53を有する。【選択図】 図2
Resumen de: US2025296047A1
A carbon dioxide process apparatus includes: a recovery device that includes a carbon dioxide absorption portion which dissolves carbon dioxide in an electrolytic solution of a strong alkali and absorbs the carbon dioxide; an electrochemical reaction device to which the electrolytic solution in which the carbon dioxide is dissolved by the carbon dioxide absorption portion is supplied and which electrochemically reduces the carbon dioxide; an anion exchange type fuel cell that supplies electric energy to the electrochemical reaction device; a carbon dioxide concentration gas supply passage that supplies a carbon dioxide concentration gas generated by the fuel cell to the electrolytic solution which is discharged from the recovery device and before being supplied to the electrochemical reaction device; and a hydrogen supply passage that supplies hydrogen generated by the electrochemical reaction device to the fuel cell.
Resumen de: US2025300205A1
When executing a depressurizing process of a hydrogen compression device and a water electrolysis device, on-off valves that supply a hydrogen gas or an oxygen gas to a fuel cell are placed in an opened state, and further, a set pressure of supply pressure reducing valves are adjusted to a value that is lower than a set pressure of bypass pressure reducing valves. Gas remaining in gas depressurizing regions is supplied, via the bypass pressure reducing valves, to the fuel cell.
Resumen de: US2025300206A1
Fuel cell system includes: fuel cell stack configured to generate power by anode/cathode gas in anode/cathode flow path: anode/cathode supply flow path supplying anode/cathode gas to anode/cathode flow path; anode/cathode discharge flow path discharging anode/cathode off-gas from anode/cathode flow path; combining portion combining anode/cathode off-gas flowing through anode/cathode discharge flow path; discharge pipe guiding combined gas combined in combining portion to outside; anode discharge valve configured to control flow of anode off-gas toward combining portion; and control unit configured to control opening and closing of anode discharge valve. Control unit: acquires hydrogen concentration of combined gas; and controls opening and closing of anode discharge valve to repeat opening/closing operation of opening for opening time based on hydrogen concentration and closing in case where power generation amount of fuel cell stack is equal to or less than power generation threshold.
Resumen de: WO2025204418A1
This power generation cell is provided with: a membrane electrode structure which is formed by integrating a membrane electrode assembly and a frame member; and a pair of separators each forming a gas flow path, through which a reaction gas flows, between a first electrode and a second electrode of the membrane electrode assembly. A contact part in which the outer edge part of the frame member of the membrane electrode structure and the pair of separators come into contact with each other is provided with a seal part. The separators each have, between the gas flow path and the seal part, a flow suppression part that is formed with protrusions and recesses toward the membrane electrode structure so as to suppress a flow of a reaction gas bypassing the gas flow path, and a bypass flow path formation part that is provided between the flow suppression part and the seal part and forms a bypass flow path through which the reaction gas flows by bypassing the gas flow path.
Resumen de: WO2025204417A1
This power generation cell comprises: a membrane electrode structure that is configured by integrating a membrane electrode assembly which has an electrolyte membrane, an anode electrode, and a cathode electrode with a frame member which supports an outer edge of the membrane electrode assembly; and a pair of separators that are disposed respectively so as to face a first surface of the membrane electrode structure and a second surface on the opposite side from the first surface and that form a gas flow path. An abutting portion where the outer edge of the frame member and outer edges of the pair of separators abut on each other is provided with a seal part so as to prevent leakage of a reaction gas. The separator has a bypass suppression part that is on the outer side of a power generation region which is between the gas flow path and the seal part and in which the electrolyte membrane and the electrode overlap and that is formed so as to be textured facing the membrane electrode structure so as to suppress a flow of a reaction gas which bypasses the gas flow path.
Resumen de: WO2025204416A1
According to the present invention, a first separator is disposed along the outer edge part of a membrane electrode structure and has a plurality of first protrusions that protrudes toward the opposite side of a first surface. A second separator is disposed along the outer edge part of the membrane electrode structure and has a plurality of second protrusions that protrudes toward the opposite side of a second surface. The plurality of first protrusions each have an elongated shape that extends along a plurality of first center lines, which are parallel to each other, with a first width that is orthogonal to the plurality of first center lines, and the plurality of second protrusions each have an elongated shape that extends along a plurality of second center lines, which are parallel to each other, with a second width that is orthogonal to the plurality of second center lines. In a plan view viewed from a direction that is perpendicular to the first surface, the first center lines and the second center lines are substantially parallel to each other, and the first width is narrower than the second width.
Resumen de: WO2025204419A1
This power generation cell comprises: a membrane electrode structure that is formed by integrating a membrane electrode assembly having an electrolyte membrane, an anode electrode, and a cathode electrode, with a frame member that supports the outer edge of the membrane electrode assembly; and a pair of separators that are disposed so as to respectively face the first surface of the membrane electrode structure and the second surface on the side thereof opposite from the first surface, and that form a gas flow path. At an abutting section where the outer edge of the frame member abuts the outer edges of the pair of separators, a seal part is provided so as to prevent leakage of a reaction gas. The separator has a flat section that stretches between the gas flow path and the seal part and that, without interruption, abuts the first surface and the second surface of the membrane electrode structure from one end to the other end in the flow direction of the gas flow path on the outside of a power generation region where the electrolyte membrane and the electrodes overlap.
Resumen de: WO2025206386A1
A fuel cell system according to the present invention is provided with a plurality of power generation units electrically connected in parallel, a plurality of gas supply lines, a plurality of oxygen supply lines, and a control device. The plurality of gas supply lines supply fuel gas to each of the plurality of power generation units. The plurality of oxygen supply lines supply oxygen-containing gas to each of the plurality of power generation units. The control device calculates a power generation current value for at least one of the plurality of power generation units on the basis of the flow rate of the fuel gas flowing through at least one of the plurality of gas supply lines or the flow rate of the oxygen-containing gas flowing through at least one of the plurality of oxygen supply lines.
Resumen de: WO2025206391A1
This fuel cell system includes a converter, a plurality of power generation units, a plurality of current sensors, and a control unit. Each of the power generation units includes a fuel cell. The plurality of power generation units are electrically connected in parallel to the converter. Each of the current sensors detects a current flowing through the power generation unit. The control unit controls the flow rates of a fuel gas, water, and air supplied to the power generation unit according to a current value of the power generation unit.
Resumen de: WO2025199584A1
The disclosure of the application provides a membrane design encompassing three main considerations; (1) employing 2D nanosheets as proton-permeable building blocks to facilitate through-membrane proton transport; (2) assembling 2D nanosheets to form 2D channels, capable of confining the proton conductor to thereby prevent loss of the proton conductor, or to prevent physical or chemical degradation of the proton conductor under the conditions in which the membrane may be exposed in its application(s); and (3) incorporating proton conductors to occupy the intersheet spaces forming the 2D channels, and/or incorporating proton conductors to form at least part of the inner surfaces of the 2D channels, enabling intersheet proton transport while blocking hydrogen gas molecules, thereby providing membranes with ultrafast proton conducting pathways due to synergistic proton transport, with high retention of the proton conductor achieved through nanoconfinement in 2D channels.
Resumen de: WO2025205088A1
In the present invention, a control device starts a stopping process for a set of first fuel cell modules. After the start of the stopping process for the set of first fuel cell modules, the control device starts a stopping process for a set of second fuel cell modules.
Resumen de: WO2025204696A1
An electrochemical cell (electrolytic cell) has a solid electrolyte layer, an air electrode layered on the front surface side of the solid electrolyte layer, and a fuel electrode layered on the rear surface side of the solid electrolyte layer. The fuel electrode has a functional layer containing a Ni alloy and a conductive solid oxide, and the average particle diameter of the Ni alloy contained in the functional layer is 0.77 μm-1.00 μm inclusive.
Resumen de: WO2025205084A1
In the present invention, a control device causes a power storage device to discharge power stored therein when a stop instruction for a work machine is received. The control device performs stop processing for a fuel cell module after the discharge of the power storage device, and causes the power storage device to be charged with generated power generated as a result of the stop processing.
Resumen de: WO2025205289A1
This biaxially-oriented polyolefin film is characterized in that: the proportion S of the melting heat amount in the range of 175-190°C to the melting heat amount in the range of 30-190°C obtained by differential scanning calorimetry is 10-70%; the biaxially-oriented polyolefin film has two layers having different contained amounts of a 4-methyl-1-pentene polymer; when, of the two layers, a layer having a smaller contained amount of the 4-methyl-1-pentene polymer is referred to as a layer A and the other layer having a greater contained amount thereof is referred to as a layer B, the layer B is positioned on at least one surface of the film; and the layer B contains the 4-methyl-1-pentene polymer as the main component. Provided is a biaxially-oriented polyolefin film that can be suitably used even in a high temperature environment in which conventional biaxially-oriented polyolefin films cannot be used as a release film or a process film.
Resumen de: WO2025204195A1
This sheet-like titanium porous body has a contact resistance of no greater than1.4 mΩ/cm2. At least on one surface of the sheet-like titanium porous body, the average pore surface area is 5 μm2 to 20 μm2, the standard deviation of the pore surface area is no greater than 45 μm2, and the number of pores is at least 13.6 or more per 1000 μm2. Optionally, the contact resistance of the sheet-like titanium porous body is no greater than1.0 mΩ/cm2.
Resumen de: WO2025205748A1
The present invention addresses the problem of providing a conductive porous base material having high water repellency without containing fluorine. The present invention is a conductive porous base material containing carbon fibers, wherein a resin containing nanocarbon aggregates is supported on the carbon fibers, the sliding angle is 2° to 60° inclusive, and the mass ratio F/C of the fluorine content to the carbon content is 0.01 or less.
Resumen de: WO2025207360A1
Embodiments disclosed herein comprise a wave energy converter (WEC) that includes a buoyant chamber with a tube depending from the buoyant chamber. In an embodiment, a battery is coupled to the WEC. In an embodiment, the battery includes a first tank for storing an oxidizing gas and a precursor fluid, and a second tank for storing a fuel. In an embodiment the battery further includes a fuel cell fluidically coupled to the first tank and the second tank, and a reaction pipe fluidically coupled to the first tank and the second tank.
Resumen de: WO2025204372A1
Problem To provide a fuel cell stack that can facilitate the connection of piping without causing an increase in size. Solution A fuel cell stack 1 has a cooling medium inlet communication hole 32, a cooling medium outlet communication hole 35, a first reaction gas inlet communication hole 31, a second reaction gas inlet communication hole 34, a first reaction gas outlet communication hole 36, and a second reaction gas outlet communication hole 33 that pass through each of a first end plate 3 and a power generation cell 2 in a first direction. On one end side of the power generation cell in a second direction orthogonal to the first direction, the first reaction gas inlet communication hole, the cooling medium inlet communication hole, and the second reaction gas outlet communication hole are arranged in a staggered manner in the aforementioned order in a third direction orthogonal to the first direction and the second direction. On the other end side of the power generation cell in the second direction, the second reaction gas inlet communication hole, the cooling medium outlet communication hole, and the first reaction gas outlet communication hole are arranged in a staggered manner in the aforementioned order in the third direction.
Resumen de: WO2025204371A1
A fuel cell stack 1 that can discharge air from within a cooling medium flow passage without leading to an increase in size, and in which power generation cells 2 each having an electrolyte membrane/electrode structure 20 and a set of separators 21, 22 respectively positioned on both sides of the electrolyte membrane/electrode structure are layered in a first direction extending in the horizontal direction, said fuel cell stack being characterized in that cooling medium flow passages 58 are formed between the separators of each set, a cooling medium inlet communication hole 32 and a cooling medium outlet communication hole 35 that penetrate through the power generation cells in the first direction and are connected to the cooling medium flow passages are formed, and an upper end section of the cooling medium outlet communication hole extends farther upward than upper end sections of the cooling medium flow passages.
Resumen de: WO2025204717A1
Provided is an electric work machine that is characterized by comprising: a fuel cell 1; a secondary cell 5; a driving motor 2 driven by electric power supplied from the fuel cell 1 or the secondary cell 5; an electric fan 16 for assisting in the warming-up of the fuel cell 1; and a controller 9 for controlling the electric fan 16, wherein the controller 9 drives the electric fan 16 such that surplus power generated by the fuel cell 1 is consumed when warming up the fuel cell 1 during startup. This configuration makes it is possible to provide an electric work machine capable of consuming surplus power even when surplus power during warm-up of the fuel cell cannot be charged to the secondary cell.
Resumen de: WO2025206204A1
Problem To provide a gaseous-substance pyrolysis apparatus and a gaseous-substance pyrolysis apparatus stack that have high heat transfer efficiency, high temperature controllability in a catalyst layer, low pressure loss, a small size, and a low heat capacity. Solution A gaseous-substance pyrolysis apparatus 100 comprises: a heat transfer substrate structure 10; a spray catalyst carrier 12 formed on one main surface of the heat transfer substrate structure 10; a catalyst material 14 supported by the spray catalyst carrier 12, the catalyst material 14 breaking down at least some of a gaseous substance using heat energy from the heat transfer substrate structure 10; and a casing 16 covering the heat transfer substrate structure 10, the spray catalyst carrier 12, and the catalyst material 14, the casing 16 forming a space through which the gaseous substance passes. Additionally, this gaseous-substance pyrolysis apparatus stack is formed by stacking a plurality of layers of the aforementioned gaseous substance pyrolysis apparatus 100.
Resumen de: WO2025204455A1
The present invention forms a flow path between a first plate part and a second plate part of a separator constituting a fuel cell stack. This flow path includes: a power generation region flow path through which a cooling medium flows along a power generation region of the separator; a supply flow path that guides the cooling medium supplied via a supply hole passing through the separator to the power generation region flow path; a bypass flow path that guides air bubbles contained in the cooling medium supplied via the supply hole to the downstream side of the power generation region flow path by bypassing the power generation region flow path; and a connection flow path that connects the supply flow path and the bypass flow path. The supply flow path has a first throttling part and a second throttling part downstream thereof which are positioned downstream of a connection position where the connection flow path is connected thereto. The first throttling part is configured so as to have a flow path resistance which is greater than that of the second throttling part.
Resumen de: WO2025204456A1
This fuel cell stack comprises a laminate (101) configured by laminating a plurality of power generation cells. The power generation cells have: an integrated electrode assembly (2) that has a membrane electrode joined body (20) in which electrodes are provided on both surfaces of an electrolyte membrane, and a resin frame member (21) that supports the membrane electrode joined body (20) over the entire circumference; a separator (3) that is provided on both surfaces of the integrated electrode assembly (2); and a seal material (32) that is provided on both surfaces of the separator (3) and that abuts the resin frame member (21) through an abutment surface (40). At least one of the resin frame member (21) and the seal material (32) has a hydrophilic functional group facing the abutment surface (40).
Resumen de: WO2025204454A1
This fuel cell stack comprises: a cell stack body having a plurality of power generation cells and a dummy cell disposed adjacent to the power generation cell at an end; and an end unit that is disposed adjacent to the dummy cell and is provided with a gas supply port and a gas discharge port which are in communication with a gas supply flow path and a gas discharge flow path of the cell stack body, respectively. The gas supply flow path is configured by a through-hole penetrating through each of the power generation cells and the dummy cell in a predetermined direction. A gas flow path includes: a central flow path provided in a central region of each of the power generation cells and the dummy cell; and an end flow path providing communication between the central flow path and the through-hole. The area of a first flow regulation portion for regulating a flow rate in the end flow path of the dummy cell is larger than the area of a second flow regulation portion for regulating a flow rate in the end flow path of the power generation cells.
Resumen de: WO2025205637A1
According to the present invention, an electrolysis cell 21 that serves as an electrochemical cell comprises: a solid electrolyte layer 211; a fuel electrode layer 213 which is superposed on the rear surface 211A side of the solid electrolyte layer 211 and contains Ni and Fe; and an air electrode layer 212 which is superposed on the upper surface 211B side of the solid electrolyte layer 211. The fuel electrode layer 213 is composed of a first layer 213F and a second layer 213S. The first layer 213F and the second layer 213S are constituted in the order of the first layer 213F and the second layer 213S from the side close to the rear surface 211A of the solid electrolyte layer 211. The concentration of Fe contained in the first layer 213F is 0.10 wt% or more and 0.80 wt% or less, and the concentration of Fe contained in the second layer 213S is less than 0.10 wt%.
Resumen de: WO2025204506A1
Provided are: a method for producing a porous separator for alkaline water electrolysis, said method using a dope solution to form a porous membrane by wet phase separation, wherein the dope solution is obtained by dissolving an organic polymer in a solvent which contains at least one of compounds (1)-(7); and a porous separator for alkaline water electrolysis which is obtained by this production method. Also provided are: a method for producing a porous membrane, said method using a dope solution to form a porous membrane by wet phase separation, wherein the dope solution is obtained by dissolving an organic polymer in a solvent which contains at least one of compounds (1), (5), and (6); and a porous membrane which is obtained by this production method. In the compound (1), R represents an alkyl group.
Resumen de: WO2025203157A1
The present invention provides a fuel cell in which a flat separator is used on one side and a separator with flow channels is used on the other side to improve power generation efficiency by creating parallel flow channels of gas and cooling water in a power generation area, while also considering the arrangement of manifolds for gas and cooling water. A fuel cell in one embodiment of the present disclosure has: a flat separator in which gas manifolds arranged side-by-side along a first direction and cooling water manifolds arranged along a second direction are formed; a separator with flow channels, disposed opposite the flat separator; and a membrane electrode assembly disposed between the flat separators and the separators with flow channels, wherein, out of an anode gas and a cathode gas, one gas is circulated between the flat separator and the membrane electrode assembly while the other gas is introduced between the membrane electrode assembly and the separator with flow channels via a through hole, and the cooling water, the anode gas, and the cathode gas are each circulated along the second direction in an area overlapping a power generation area.
Resumen de: WO2025206744A1
A porous carbon body according to one disclosure is a porous carbon body for a fuel cell catalyst support to support a catalyst material of a fuel cell. Specifically, the porous carbon body contains 0.50 to 5.00 at% of nitrogen and has a zeta potential of at least 0 mV.
Resumen de: WO2025207955A1
The present disclosure provides composite ion exchange membranes and methods of making the same. The composite ion exchange membranes of the present disclosure generally include a first and second coating layer comprising an ionomer and a catalyst coated on opposite sides of a reinforcing polymer sheet, and a third and fourth coating layer comprising an ionomer coated on the first and second coating layers. The first and second coating layers may be coated on the reinforcing polymer sheet via doctor blade casting or dip coating techniques. The catalyst may be incorporated within the first and second coating layers of the composite ion exchange membrane using in situ or ex situ techniques.
Resumen de: WO2025206545A1
The present application relates to a method for manufacturing a metal separator and a metal separator manufactured thereby. According to a method for manufacturing a metal separator and a metal separator manufactured thereby of the present application, a process time can be shortened, and electrical conductivity and corrosion resistance can be improved at the same time.
Resumen de: WO2025208164A1
A functionalized metal/carbon nanotube-based electrified nanoporous membrane with a cooperative nitrite-enriching component to achieve energy-efficient ammonia production from low-concentration nitrate. The use of flow-through electrofiltration reduces energy consumption and treatment time. Integrating an ionophore as a cooperative component into the conductive filtration membrane enriches nitrite within the catalyst microenvironment, enabling conversion of unreacted NO2- to NH3 to enhance overall selectivity without directly modifying the catalytic active sites.
Resumen de: WO2025205240A1
As shown in fig. 1, this carbon fiber-resin composite sheet 10 has thermoplastic resin 12 and carbon fibers 14 dispersed in the thermoplastic resin 12. In at least one surface of the carbon fiber-resin composite sheet 10, a cross section 14a of the carbon fibers 14 is exposed on the surface of the carbon fiber-resin composite sheet 10 so as to be flush with the surface of the carbon fiber-resin composite sheet 10.
Resumen de: WO2025206393A1
This fuel cell system includes a plurality of power generation units and a control unit. The power generation unit includes a fuel cell that generates electric power using fuel gas and air. The fuel gas is supplied from a first supply system to the fuel cell. The air is supplied from a second supply system to the fuel cell. When the difference between the voltages of each of a plurality of power generation units exceeds a difference threshold value, the control unit changes verification of the state of at least one of the first supply system and the second supply system to the power generation unit that has the maximum voltage and a power generation unit that is different from the aforementioned power generation unit.
Resumen de: WO2025206389A1
In the present invention, a fuel cell system includes a plurality of power generation units, a plurality of oxygen supply units that supply an -containing gas to each of the plurality of power generation units, a discharge unit, and a control device. Exhaust paths for the exhaust gas from each of the plurality of power generation units collectively constitute the discharge unit. When some of the plurality of power generation units execute an operation stop process, the control device performs control so that oxygen-containing gas is continuously supplied to some of the power generation units by some of the plurality of oxygen supply units, and performs control so that the oxygen-containing gases supplied to some of the power generation units will differ in terms of flow rate between during execution of the operation stop process of some of the power generation units and following the conclusion of the operation stop process of some of the power generation units.
Resumen de: WO2025205124A1
A gas diffusion electrode according to one embodiment of the present invention has a microporous layer, containing carbonaceous fine particles and a fluorine-based water-repellent resin, on at least one surface of a conductive porous substrate. In the gas diffusion electrode, the ratio (surface layer F/C) of elemental fluorine to elemental carbon detected, at 1,000 times magnification and an acceleration voltage of 2.0 kV by scanning electron microscope energy dispersive X-ray spectroscopy (SEM-EDX), on the surface on the side of the microporous layer with which the conductive porous substrate is not in contact is 0.35 or more and 0.60 or less.
Resumen de: WO2025203927A1
Provided are a fuel cell control device and a fuel cell control method for controlling power distribution of a fuel cell vehicle in which a hybrid system configured from a fuel cell and a secondary battery is used as a drive source, the fuel cell control device and the fuel cell control method comprising a feedforward control unit or a feedforward control step for determining a power generation command value for the fuel cell with respect to requested power on the basis of a control parameter and performing durability prioritization control or fuel consumption prioritization control of the fuel cell, a deterioration/internal state estimation unit or a deterioration/internal state estimation step for estimating a deterioration state and an internal state of the fuel cell and determining a deterioration/internal state estimation value of the fuel cell, and a control correction unit or a control correction step for correcting the control parameter on the basis of the deterioration/internal state estimation value, and the fuel cell control device and the fuel cell control method also being such that, in the feedforward control unit or the feedforward control step, the durability prioritization control and the fuel consumption prioritization control are switched on the basis of the corrected control parameter.
Resumen de: WO2025204476A1
This power generation plan correction method includes: a step for receiving a power generation plan of a fuel cell device provided with a plurality of fuel cell power generation units; and a step for correcting the power generation plan of the fuel cell device so that the time change rate of the output of the fuel cell device changes according to the magnitude of a change in output of the fuel cell device when, in response to a change in output of the fuel cell device when shifting from a first unit period to a second unit period in the received power generation plan of the fuel cell device, the timing for changing the number of power generation units of the fuel cell power generation units is brought forward compared to the timing of shifting from the first unit period to the second unit period, and the first unit period is shifted to the second unit period in the received power generation plan of the fuel cell device.
Resumen de: WO2025203648A1
The present invention comprises: a cell main body part in which a first electrode layer, an electrolyte layer, and a second electrode layer are stacked in this order; and a metal support body which supports the cell main body part. The metal support body comprises a support part which comprises a support surface that supports the first electrode layer-side main surface of the cell main body part, and an opposite surface on the reverse side of the support surface, and which can communicate a gas between the support surface and the opposite surface. An adhesive layer that is bonded to the support surface is disposed in a facing region of the support surface, the facing region facing the peripheral edge part of the first electrode layer. The region of the first electrode layer positioned inside the peripheral edge part is bonded to the support surface, and the peripheral edge part of the first electrode layer is bonded to the adhesive layer.
Resumen de: WO2025203647A1
The present invention comprises: a cell main body part in which a first electrode layer, an electrolyte layer, and a second electrode layer are stacked in this order; and a metal support body which supports the cell main body part. The metal support body comprises: a support part which comprises a support surface that supports one main surface of the cell main body part, and an opposite surface on the reverse side of the support surface, and which can communicate a gas between the support surface and the opposite surface; and a frame part which is disposed so as to surround the outer periphery of the support part. The thickness of the support part is formed to be thinner than the thickness of the frame part.
Resumen de: WO2025204406A1
This fuel cell stack is provided with: a pair of first end units respectively disposed adjacent to one end surface and the other end surface of a cell laminate; a pair of second end units disposed on the outside of the pair of first end units so as to face the pair of first end units; a case having one end and the other end respectively fixed to the pair of second end units, and forming a housing space for housing the cell laminate; and elastic members interposed between the pair of first end units and the corresponding pair of second end units disposed opposite thereto, and having a sealing function in which the amount of contraction changes with relative movement of the pair of first end units and the cell laminate relative to the case in the laminate direction.
Resumen de: WO2025204407A1
This fuel cell stack comprises: a cell laminate constituted by laminating, in a predetermined direction, a plurality of power generation cells each having a membrane electrode structure including an electrolyte membrane and an electrode, and a separator; a housing surrounding the cell laminate; and a restriction member which is disposed in a gap between an inner wall surface of the housing and an outer surface of the cell laminate, the surfaces facing each other, and limits movement of the cell laminate in a direction orthogonal to the predetermined direction. The separator has a pair of plates that are joined to each other and form a flow path through which a reaction gas flows, and a flow path through which a cooling medium flows. The pair of plates have, on an outer edge part that is within a predetermined range from an outer edge facing the restriction member, rib parts that protrude in predetermined directions and away from each other. The rib parts extend in a shape of recesses and protrusions along the outer edge when viewed from the laminating direction of the cell laminate.
Resumen de: WO2025206388A1
This fuel cell apparatus comprises: a power generation unit including a plurality of fuel cells; and a control device. The control device starts power generation of the plurality of fuel cells when a fuel cell at the highest temperature among the plurality of fuel cells reaches a prescribed temperature set in advance.
Resumen de: WO2025204389A1
Provided is a fuel cell system that suppresses an increase in the power amount of an external power supply for starting a fuel cell. A fuel cell system 1 comprises: a fuel cell 8 which generates power by reacting hydrogen and oxygen, and can supply electric power to an electric load at the time of power reduction or loss of the external power supply; a hydrogen storage alloy tank 6 which stores hydrogen and can supply hydrogen to the fuel cell; a heater 7 which heats the hydrogen storage alloy tank 6; a storage battery 5 which can be charged by a system power supply 20 and can supply power to a load 30; and a control circuit 4. The control circuit 4 executes a first control process for supplying power from the storage battery 5 to the heater 7. In the fuel cell system 1, since the battery 5 can supply power to the heater 7, the hydrogen storage alloy tank 6 is not heated by the heater 7 during waiting in a normal state, but can be heated by supplying power from the storage battery 5 to the heater 7 after a power outage.
Resumen de: WO2025206301A1
This electrochemical cell comprises a metal plate, a first electrode positioned on the metal plate, and a solid electrolyte layer positioned on the metal plate and the first electrode. The first electrode has a first surface facing the metal plate, a second surface positioned on the opposite side to the first surface, and a third surface connecting the first surface and the second surface. The solid electrolyte layer has a first portion located outside the contour of the first electrode in a plan view, a second portion located on the second surface, and a third portion located between the first portion and the second portion. The average thickness of the first portion is smaller than the average thickness of the second portion.
Resumen de: WO2025200587A1
The present application relates to a method for preparing an amorphous platinum alloy. The method for preparing an amorphous platinum alloy comprises the following steps: melting a transition metal and platinum into a cast ingot in an inert gas atmosphere; removing an oxide layer from the surface of the cast ingot; and carrying out melt spinning on the cast ingot to obtain an amorphous platinum alloy. The amorphous platinum alloy provided in the present application contains a large amount of transition metal and has a low price, so that the cost of the amorphous platinum alloy is relatively low. The multi-metal composition of the amorphous platinum alloy can improve the catalytic performance by means of an alloying effect, and compared with a conventional crystalline alloy catalyst, the interior of the amorphous alloy is lack of a structural defect causing easy electrochemical corrosion, so that an oxidation-resistant potential of 0.8 V or more can be achieved; in addition, the performance attenuation rate can also be minimized after polarity reversal occurs, and failure would not easily occur at a high potential. Therefore, the amorphous platinum alloy can serve as a fuel cell catalyst with lower cost and better durability.
Resumen de: WO2025205086A1
This work machine comprises: a work apparatus; a fuel cell supported by a vehicle body; a fan for cooling heat source equipment provided to the work machine; and a main control device. The main control device causes the fan to rotate by using electric power generated by the fuel cell when stopping the fuel cell.
Resumen de: WO2025206231A1
An electrochemical cell disclosed herein comprises a metal body, an element part, and an encapsulation part. The element part includes a solid electrolyte layer and a first electrode including a first material. The encapsulation part is in contact with the first electrode and the metal body around the element part, and includes a seal material. The first electrode is located at a boundary with the encapsulation part, and has a first portion including the first material and the seal material. The first portion includes a first porous material.
Resumen de: WO2025203740A1
A cell control system (1) controls the internal resistance of an electrochemical cell (2). The cell control system (1) has a deteriorated portion identification unit (31) and an operation determination unit (32). The deteriorated portion identification unit (31) performs deterioration diagnosis for identifying a deteriorated portion of the electrochemical cell (2). The operation determination unit (32) determines a reduction operation on the basis of the result of the deterioration diagnosis of the deteriorated portion identification unit (31). The reduction operation is an operation of the electrochemical cell (2) for reducing the internal resistance of the electrochemical cell (2), the internal resistance having been increased due to deterioration of the deteriorated portion. This cell control system (1) performs a control so that the internal resistance of the electrochemical cell (2), the voltage applied to the electrochemical cell (2), and the like reach specific target values by executing the reduction operation.
Resumen de: WO2025203428A1
Provided is a rollable gas diffusion member. This gas diffusion member is made of a flexible material and is disposed between a separator and a catalyst layer in a fuel cell. The gas diffusion member comprises: a gas diffusion part that comprises a plurality of first grooves which are formed in a first direction and which serve as gas flow paths in a surface on the separator side, and a first rib which is formed between adjacent first grooves; and an introduction part that connects the gas diffusion part and a manifold for supplying gas to be introduced into the gas diffusion part. The introduction part comprises: a plurality of second grooves having a second direction different from the first direction in the first grooves; a second rib formed between adjacent second grooves; and a third groove having the same direction as the first direction.
Resumen de: WO2025207434A1
The disclosure describes a method of stabilizing a carbon supported noble metal catalyst by selective metal oxide deposition on the carbon support of the catalyst by a vapor deposition process. The method includes the flowing steps: a) Providing a carbon supported noble metal catalyst, b) Forming a blocking layer over an exposed surface of the noble metal on the catalyst, c) Exposing the catalyst to a gas containing metal organic compounds to absorb the compounds selectively to the carbon support, d) Exposing the catalyst to an oxidant to form a metal oxide on the catalyst carbon support, e) Repeating steps c) and d) sequentially for one to ten of cycles, preferably one to five cycles, f) Removing the blocking layer from the catalyst to re-expose the noble metal catalyst surface.
Resumen de: WO2025204390A1
Provided is a fuel cell system configured to be capable of, in a case in which there is no external power source, starting a fuel cell even if the ambient temperature is low. A fuel cell system 1 comprises: a fuel cell 8 which is for generating power by reacting hydrogen and oxygen and which is capable of supplying power to a load 30; a hydrogen storage alloy tank 6 which is for storing hydrogen and which is capable of supplying hydrogen to the fuel cell 8; a heater 7 for warming the hydrogen storage alloy tank 6; a rechargeable battery 5 capable of supplying power to the heater 7; and a control circuit 4. The control circuit 4 executes first control processing for supplying power from the rechargeable battery 5 to the heater 7 if the hydrogen storage alloy tank 6 does not satisfy a prescribed condition of being capable of supplying hydrogen to the fuel cell 8. Accordingly, even in a case in which there is no external power source, the hydrogen storage alloy tank 6 is warmed by the heater 7 and hydrogen is supplied to the fuel cell 8, and the fuel cell 8 can be started.
Resumen de: WO2025204405A1
This fuel cell stack comprises a cell stack, a housing surrounding the cell stack, and a plurality of guide members that are supported by the housing and extend in a prescribed direction so that a plurality of recesses provided to the outer edge part of a separator are engaged. The separator has a pair of first opposing sides that face each other and a pair of second opposing sides that face each other. The plurality of recesses include: a target corner part that is one of a pair of corner parts where the pair of first opposing sides and the pair of second opposing sides intersect; and a slit-shaped first recess part and a slit-shaped second recess part that extend toward the central part of the separator from the substantially central part of the pair of sides that does not have the target corner part at an end section thereof, among the pair of first opposing sides and the pair of second opposing sides.
Resumen de: US2025309312A1
A fuel cell stack including a cell stacked body, a housing surrounding the cell stacked body, a restriction member including a first end surface contacting an outer side surface of the cell stacked body through an opening formed in a side wall of the housing to restrict a movement of the cell stacked body, a support member supporting a second end surface of the restriction member to cover the opening, and a pressing member pressing the support member toward a surface of the side wall. The housing includes an outer side wall extending parallel to the side wall at a predetermined distance from the surface of the side wall on an outside of the side wall, and the pressing member is interposed between the outer side wall and support member such that the restriction member applies a predetermined pressing force to the cell stacked body.
Resumen de: US2025309307A1
A regenerative fuel cell system includes a water electrolysis device, a hydrogen compression device, and a fuel cell. The regenerative fuel cell system further includes external relief valves including a first one between an oxygen supply path for supplying oxygen gas from the water electrolysis device to the fuel cell and a vacuum space, a second one between a second hydrogen supply path for supplying hydrogen gas from the hydrogen compression device to the fuel cell and a vacuum space, a third one between a hydrogen discharge path through which hydrogen gas not pressurized in the hydrogen compression device flows and a vacuum space, and a fourth one between a first hydrogen supply path through which hydrogen gas supplied from the water electrolysis device to the hydrogen compression device flows and a vacuum space.
Resumen de: US2025309306A1
The present application provides cationic viologen derivatives, referred to as transquats, and compositions and uses thereof. The transquats undergo cycles of reduction and oxidation processes in water and are useful in various applications, for example, as electrolytes in Aqueous Redox Flow Batteries (ARFBs). The transquat compounds of the present application have the structure of Formula I
Resumen de: US2025309308A1
A fuel cell stack including a cell stacked body having power generation cells, a guide part protruding from inner wall of a case toward the cell stacked body, a positioning portion provided on an edge portion of the power generation cell to position the power generation cell relative to the case. The positioning portion includes first and second protruding portions from first and second edge portions of the power generation cell, the guide part includes a first guide part provided on one side in a first direction of the first protruding portion and a second guide part on the other side in the first direction of the second protruding portion, and the first and second guide parts include a first and second abutting surface abutting a first and second end surface of the first and second protruding portions.
Resumen de: US2025309311A1
A method of operating a fuel cell stack. The method includes, in a first state, communicating a first reactant into a first orifice in a first fuel cell and a first product out of a second orifice in the first fuel cell to form a first flow path. The method further includes transitioning the first fuel cell from the first state into a second state. The method also includes, in a second state, communicating the first reactant into the second orifice in the first fuel cell and the second product out of the first orifice in the first fuel cell to form a second flow path opposite the first flow path.
Resumen de: US2025309313A1
A fuel cell stack includes a multilayered cell, a stack case, and an end unit. The fuel cell stack further includes a shock-absorbing member which is disposed between the stack case and the multilayered cell and which receives an impact relative to the multilayered cell. The shock-absorbing member has an end inserted in the stack case and includes a first step portion at the end of the shock-absorbing member for positioning the shock-absorbing member in a vertical direction with respect to a fastening hole provided in the end unit. The end unit includes a second step portion for positioning the shock-absorbing member in a horizontal direction and the second step portion is in contact with the shock-absorbing member. The fuel cell stack further includes a fastening member, the first step portion engages with the second step portion, and the fastening hole is fastened with the fastening member for positioning the end unit and the shock-absorbing member.
Resumen de: US2025309310A1
A membrane electrode structure including a membrane electrode assembly and a frame member made of resin supporting the membrane electrode assembly, the membrane electrode structure having an electrolyte membrane and an electrode, and a separator made of metal, disposed facing the membrane electrode structure, the separator being configured to form a flow path for a reaction gas to flow between the membrane electrode structure and the separator. The frame member includes a first region having an outer edge portion of the frame member, a second region located inside the first region, and a protruding portion provided in the first region and extending outward beyond an outer edge of the separator, and a thickness of the frame member in the first region where the protruding portion is located, is larger than a thickness of the frame member in the second region.
Resumen de: US2025309284A1
A fuel cell stack including a cell stacked body, first and second end units, a cooling medium discharge flow path, and a tube arranged in the cooling medium discharge flow path. The second end unit includes a first end surface facing the cooling medium discharge flow path and a second end surface opposite to the first end surface, a through-hole is formed penetrating the second end unit to communicate with a second opening of the tube on downstream side of the cooling medium discharge flow path, the first and second end units include first and second support portions supporting peripheral portions of the first and second ends of the tube, the second support portion includes a tapered portion formed on an inner peripheral surface of the through-hole, and the tapered portion is formed to gradually narrow toward the second end surface of the second end unit.
Resumen de: US2025309285A1
A manufacturing method of a fuel cell membrane electrode structure configured to attach a gas diffusion layer to an assembly part in which a catalyst coated membrane having an electrode catalyst layer provided on a surface of an electrolyte membrane is supported by a resin frame member. The manufacturing method includes the steps of: placing the assembly part on a base; applying an adhesive to the assembly part placed on the base along a bonding position between the catalyst coated membrane and the resin frame member; placing the gas diffusion layer on the assembly part to which the adhesive is applied; and pressing the gas diffusion layer placed on the assembly part along the bonding position and injecting a curing accelerator to the adhesive applied to the assembly part along the bonding position through the gas diffusion layer.
Resumen de: US2025309280A1
Aspects of the present disclosure generally relate to an electrocatalyst. The electrocatalyst including a thio-modified carbon support. The thio-modified carbon support including a carbon support, the carbon support including a carbon black. A ligand is coupled to the carbon support. The ligand including a thiol group. The thio-modified carbon support including a metal catalyst coupled to the ligand.
Resumen de: DE102024108733A1
Eine Anordnung (1) elektrochemischer Zellen (2), insbesondere Elektrolysezellen, umfasst eine mehrere, jeweils in einem Zylinder (15, 16) geführte Kolben (18) aufweisende hydraulische Kompressionsvorrichtung (7), welche zur Ausübung einer Druckkraft auf die gestapelten Zellen (2) ausgebildet ist. Die Zylinder (15, 16) sind durch mindestens eine zum Druckausgleich vorgesehene Querverbindung (12, 13) miteinander verbunden.
Resumen de: US2025309282A1
A fuel cell stack including a cell stacked body including power generation cells, a housing surrounding the cell stacked body, and a fixed member fixed to the housing to face an outer surface of the cell stacked body. Each of the power generation cells includes a unitized electrode assembly including a membrane electrode assembly and a frame member having a flexibility and supporting an edge portion of the membrane electrode assembly, and a separator disposed to face the unitized electrode assembly to form a flow path between the separator and the unitized electrode assembly, an edge portion of the frame member includes a protruding portion protruding outward from an edge portion of the separator, and the protruding portion includes a bent end portion bent toward the edge portion of the separator and sandwiched between the fixed portion and the edge portion of the separator.
Resumen de: US2025309283A1
A fuel cell structure includes a tunnel portion which is formed in the separator, bypasses the seal portion, and allows the communication hole and the fluid channel to communicate with each other. The tunnel portion includes tunnel bodies extending from the communication hole toward the fluid channel, a joint channel which joins ends of the tunnel bodies together so as to allow for fluid communication through the ends, and openings which allow the joint channel and the fluid channel to communicate with each other. The tunnel bodies include an end tunnel body connected to an end of the joint channel. The end tunnel body is connected to the joint channel at an acute angle and a connection portion between the joint channel and the end tunnel body is curved in an arc.
Resumen de: US2025309291A1
In a first stacked body providing step, a first stacked body, in which a first ionomer material having an ion exchange capacity of less than a predetermined value and a first electrode are stacked, is provided. In a second stacked body providing step, a second stacked body, in which a second ionomer material having an ion exchange capacity of equal to or greater than the predetermined value and a second electrode are stacked, is provided. In a substrate providing step, an electrolyte substrate is provided. In a swelling step, the first stacked body, the second stacked body, and the electrolyte substrate are caused to swell. In a joining step, the electrolyte substrate and the first ionomer material of the first stacked body are joined together, and the electrolyte substrate and the second ionomer material of the second stacked body are joined together.
Resumen de: US2025309289A1
A fuel cell system including a power generator including a fuel cell stack that generates power with fuel gas and oxidant gas, the fuel gas supplied to an anode, the oxidant gas supplied to a cathode, and a fuel supply line connected to a fuel inlet leading to the anode, a circulation system including a fuel off-gas line connected to a fuel off-gas outlet leading to an outlet of the anode, a heat exchanger in the fuel off-gas line, and a recirculation line downstream of the heat exchanger in the fuel supply line and the fuel supply line; and a condensed water line branching from the downstream of the heat exchanger discharging condensed water from the fuel off-gas and condensed by the heat exchanger, wherein the recirculation line is connected to the fuel supply line above a branch point between the fuel off-gas line and the condensed water line.
Resumen de: US2025309297A1
A fuel cell system includes a fuel cell, a power storage, an alternating-current load source, and a measuring unit. The power storage is configured to store electric power. The alternating-current load source is coupled on a path between the fuel cell and a load. The measuring unit is configured to measure an impedance of the fuel cell. The measuring unit is configured to determine a correction value with respect to a reference impedance value in a state where a load current does not flow from the fuel cell to the load, the correction value taking into consideration a generation of a noise due to the load current, and measure the impedance of the fuel cell, based on the determined correction value.
Resumen de: DE102024003247A1
Die Erfindung betrifft ein Verfahren zur Herstellung eines Kühlers (1) aus mehreren Bauteilen (2, 3), wobei- zumindest eines der Bauteile (2, 3) als wellenförmiges Bauteil (2) mit einem wellenförmigen Querschnitt ausgebildet ist und- das zumindest eine wellenförmige Bauteil (2) im Bereich von an Wellentälern und/oder Wellenbergen ausgebildeten ebenen Anlagebereichen (A1 bis A3) an dem zumindest einen weiteren Bauteil (3) angelegt wird und anschließend in den Anlagebereichen (A1 bis A3) mit diesem unter Ausbildung von Schweißnähten (S1 bis S3) verschweißt wird.Erfindungsgemäß ist vorgesehen, dass- die Schweißnähte (S1 bis S3) in einem Laserstrahlschweißverfahren erzeugt werden, indem eine Anzahl von Laserstrahlen (LS) am jeweiligen Anlagebereich (A1 bis A3) auf eine Oberfläche zumindest eines der Bauteile (2, 3) geführt wird, und- eine Gesamtbreite (bL) der Anzahl von Laserstrahlen (LS) derart gewählt wird, dass diese am jeweiligen Anlagebereich (A1 bis A3) an einer Auftreffposition auf der Oberfläche des zumindest einen Bauteils (2, 3) mindestens dem 1,1-Fachen einer Breite (bF) des Anlagebereichs (A1 bis A3) entspricht.
Resumen de: DE102024109017A1
Die hier offenbarte Technologie betrifft erfindungsgemäß ein Brennstoffzellensystem (10), aufweisend eine Brennstoffzelle (11) mit einer Anode (12) und einer Kathode (13), einen Kathodeneinlasspfad (14) zum Leiten von Kathodengas in die Kathode (13), einen Kathodenauslasspfad (15) zum Leiten von Prozessgas aus der Kathode (13) in die Umgebung des Brennstoffzellensystems (10), wobei im Kathodeneinlasspfad (14) ein Kompressor (16) zum Komprimieren des Kathodengases angeordnet, wobei im Kathodenauslasspfad (15) eine durch Prozessgas antreibbare Turbine (17) angeordnet ist, und eine Überlastkupplung (18) für eine überlastgeregelte Drehmomentübertragung zwischen dem Kompressor (16) und der Turbine (17). Die erfindungsgemäße Technologie betrifft ferner ein Fahrzeug (100) mit dem Brennstoffzellensystem (10).
Resumen de: DE102024108919A1
Die vorliegende Erfindung betrifft eine Elektrolytlösung für eine Redox-Flow-Batterie mit organischen Verbindungen aus einer spezifischen Gruppe an Ketazinen nach der folgenden Formel I:als Redoxsystem. Des Weiteren betrifft die vorliegende Erfindung ein Verfahren zum Betreiben einer elektrisch wiederaufladbaren Redox-Flow-Batterie sowie die Verwendung organischer Verbindungen nach der Formel I und deren Oligomere und Polymere als Redoxsystem zur Speicherung und Freisetzung elektrischer Energie.
Resumen de: DE102024108741A1
Die Erfindung betrifft eine Dichtvorrichtung (10) zum Einsatz in einer Brennstoffzelle (20) mit einem ersten Dichtabschnitt (1) und einem zweiten Dichtabschnitt (2), die auf gegenüberliegenden Seiten einer Membrane (3), insbesondere einer Subgasket, anordbar sind und die einen Mediumfluss entlang der Membrane (3) verhindern können, wobei zumindest einer der beiden Dichtabschnitte (1, 2) zum Toleranzausgleich mehrere nebeneinander angeordnete Dichtlippen (2.1) aufweist.
Resumen de: DE102024109010A1
Die hier offenbarte Technologie betrifft erfindungsgemäß ein Verfahren zum Ermitteln eines Alterungsfaktors, basierend auf welchem ein Alterungszustand einer Brennstoffzelle ermittelbar ist, aufweisend die Schritte: Bereitstellen einer Neu-Polarisationskurve (11) einer Neu-Brennstoffzelle, Bereitstellen einer Schaden-Polarisationskurve (12) einer Schaden-Brennstoffzelle, Ermitteln des Alterungsfaktors basierend auf der Neu-Polarisationskurve (11) und der Schaden-Polarisationskurve (12). Die Technologie betrifft ferner eine Ermittlungsvorrichtung (10) und ein Computerprogrammprodukt (30) zum Ausführen des Verfahrens sowie ein computerlesbares Speichermedium (40), auf welchem das Computerprogrammprodukt (30) gespeichert ist.
Resumen de: US2025309279A1
A manufacturing method for a membrane electrode assembly includes: a placing-frame-member step of placing a frame member on a suction plate; a placing-electrode-catalyst-layer step of placing an electrode catalyst layer on the frame member so as to have a circumferential edge of the electrode catalyst layer overlapped with a margin of an opening of the frame member; a placing-electrolyte-membrane step of placing an electrolyte membrane on an opposite side of the electrode catalyst layer to the frame member; and a peeling-protective-sheet step of peeling a protective sheet. A circumferential edge of the electrolyte membrane is placed beyond that of the electrode catalyst layer. A two-layer portion of the frame member and electrolyte membrane and a three-layer portion of the frame member, electrode catalyst layer, and electrolyte membrane are sequentially formed in the placing-electrolyte-membrane step from the circumferential edge of the electrolyte membrane to the margin of the opening.
Resumen de: US2025309294A1
In some examples of this technology, a vehicle is disclosed that includes a fuel cell exhaust system for routing of fuel cell byproducts of the vehicle. The vehicle includes at least two fuel cells. Each of the at least two fuel cells have an exhaust port through which byproducts of fuel cell operation flow. The vehicle includes at least two outlet couplers respectively coupled, at a first end, to the exhaust port of each of the fuel cells. The vehicle includes at least two water separators respectively coupled, at an inlet end, to a second end of each of the at least two outlet couplers. The vehicle includes at least two vertical exhaust pipes respectively coupled to a top side of each of the at least two water separators. The water separators separate water from steam produced by the fuel cells.
Resumen de: US2025309286A1
A fuel cell stack including a joined separator, and a membrane electrode structure including a membrane electrode assembly disposed between a pair of the joined separators, the membrane electrode assembly including an electrolyte membrane and an electrode. The joined separator includes a first metal separator and a second metal separator welded together along a welding line, and the second metal separator includes a convex portion formed along the welding line so as to protrude toward the first metal separator.
Resumen de: US2025309288A1
A fuel cell system including a power generator including a fuel cell stack generating power with fuel and oxidant gas and oxidant gas, a combustor that combusts combustible gas introduced from a combustion gas inlet, and a fuel supply line connected to a fuel inlet leading to an anode of the generator, and a circulation system including a fuel off-gas line connected to a fuel off-gas outlet leading to an outlet of the anode, a heat exchanger in the fuel off-gas line, a combustion gas line branching from a downstream of the heat exchanger in the fuel off-gas line and connected to the combustion gas inlet, a recirculation line branching from downstream of the heat exchanger in the fuel off-gas line and connected to the fuel supply line, and a pressure control valve adjusting a pressure of the recirculation line distributing the fuel off-gas at a predetermined distribution ratio.
Resumen de: US2025309281A1
A manufacturing method of a fuel cell separator including pressing a separator substrate having a first surface and a second surface and made of a metal, into an uneven shape to form a gas flow path on the first surface for allowing a reaction gas to flow and a cooling flow path on the second surface for allowing a cooling medium to flow, roughening the second surface to increase a surface roughness of the second surface, and forming a coating having corrosion resistance on the first surface and the second surface after the roughening.
Resumen de: WO2025202585A1
The present invention relates to a functionalised vinyl acetate compound and the use thereof in different applications.
Resumen de: US2025309290A1
An electrochemical hydrogen compression system comprises a hydrogen compression stack having a unit cell including an electrolyte membrane, an anode disposed on one surface of the electrolyte membrane, and a cathode disposed on another surface of the electrolyte membrane, and that supplies a hydrogen gas to the anode, and delivers from the cathode the hydrogen gas which has been compressed, an electrical power source device that applies a voltage to the hydrogen compression stack, a hydrogen supply device that supplies the hydrogen gas to the hydrogen compression stack, a storage device that stores the hydrogen gas output from the hydrogen compression stack, and a return flow path that returns the hydrogen gas output from the hydrogen compression stack to the hydrogen supply device, wherein a hydrogen storage tank that stores the hydrogen gas is provided in the return flow path.
Resumen de: US2025309287A1
A fuel cell stack including a cell stacked body having cell units, a housing, and a positioning member supported by an inner side surface of the housing. The cell unit includes a membrane electrode structure including a membrane electrode assembly and a film member made of resin, and a separator disposed facing the membrane electrode structure and provided with a positioning portion. The film member includes an exposed portion extending outward beyond the positioning portion, the cell unit includes a reinforcing member bonded to the exposed portion, the reinforcing member includes a first positioned portion positioned by the positioning portion and a second positioned portion engaged with or fitted to the positioning member, and an edge of the second positioned portion is positioned at the same position as an outer edge of the film member, or protrudes outward beyond the outer edge of the film member.
Resumen de: US2025305168A1
The present disclosure provides composite ion exchange membranes and methods of making the same. The composite ion exchange membranes of the present disclosure generally include a first and second coating layer comprising an ionomer and a catalyst coated on opposite sides of a reinforcing polymer sheet, and a third and fourth coating layer comprising an ionomer coated on the first and second coating layers. The first and second coating layers may be coated on the reinforcing polymer sheet via doctor blade casting or dip coating techniques. The catalyst may be incorporated within the first and second coating layers of the composite ion exchange membrane using in situ or ex situ techniques.
Resumen de: US2025305167A1
The present disclosure relates to electrode compositions, in particular electrode compositions comprising hybrid electrode particles, which can be used in solid oxide electrochemical cells. The present disclosure also relates to processes for preparing hybrid electrode particles. The present disclosure also relates to electrodes, including sintered electrodes, comprising the electrode compositions, and to solid oxide electrochemical cells comprising the electrode compositions.
Resumen de: US2025305160A1
An electrolyte membrane comprising a recombination catalyst layer. The membrane has a thickness of less than or equal to 100 μm and is a single coherent polymer film comprising a plurality of ion conducting polymer layers. The recombination catalyst layer comprises particles of an unsupported recombination catalyst dispersed in an ion conducting polymer and the layer has a thickness in the range of and including 5 to 30 μm. Catalyst coated membranes (CCMs) incorporating the electrolyte membranes are also provided, together with methods of manufacturing the electrolyte membranes.
Resumen de: DE102024108549A1
Die vorliegende Erfindung betrifft einen Katalysator, der Folgendes umfasst:i) einen Katalysatorträger, der aus einem Material besteht, der ausgewählt ist aus der Gruppe umfassend Zeolithe, Ceroxid, CeO2, Magnesiumoxid, MgO, Zirkondioxid, ZrO2, Siliciumdioxid, SiO2, Titandioxid, TiO2, und Aluminiumoxid, Al2O3, Mischungen und Mischoxide davon,ii) Mangan-promotiertes Ruthenium auf dem Katalysatorträger geträgert, wobei Mangan in einem Bereich von 0.01 Gew.-% bis 40 Gew.-%, basierend auf das Gewicht des Katalysators, und Ruthenium in einem Bereich von 0.01 Gew.-% bis 20 Gew.-%, basierend auf das Gewicht des Katalysators, vorliegen. Ein solcher Katalysator weist eine ausgezeichnete Selektivität für die Oxidation von Kohlenstoffmonoxid in Gegenwart von Wasserstoff in einem breiten Temperaturbereich auf. Daher kann dieser Katalysator in ein Verfahren zum Aufreinigen von Wasserstoff eingesetzt werden, der Verunreinigungen durch Kohlenstoffmonoxid enthält.
Resumen de: WO2025202649A1
A carbon nitride film, wherein the thickness of the film is from 0.3 to 40nm. A product comprising substrate and the carbon nitride film, wherein the film is in contact with the substrate.
Resumen de: WO2025202484A1
The invention relates to a system comprising: a fuel cell operated with an anode gas; an infrared camera; a tank filled with liquid anode gas; evaporation means for evaporating the anode gas; and heat transfer means, the heat transfer means transferring heat from the infrared camera to the evaporated anode gas during operation.
Resumen de: US2025308724A1
A flexible electrical conductor including an assembly comprising a flexible conductive core made of a first metal material and a sheath covering the conductive core and made of a second metal material having an electrical resistivity higher than the electrical resistivity of the first metal material; a first connection strip formed at least in part by the second metal material and connected to a first end of the assembly, wherein, at the first end of the assembly, the sheath and the first connection strip are bonded by TIG welding, and the conductive core and the first connection strip are bonded by fillet-brazing or soldering.
Resumen de: US2025309481A1
An electrically conductive member includes a first portion and a second portion having a resistivity different from that of the first portion. An electrochemical cell device includes an electrically conductive member and an electrochemical cell connected to the electrically conductive member. The electrochemical cell includes a first part connected to the first portion, and a second part connected to the second portion. A temperature of the first part is higher than a temperature of the second part. A resistivity of the first portion is larger than a resistivity of the second portion.
Resumen de: US2025309300A1
A hydrogen storage assembly includes an enclosure substantially encompassing an electrolyzer, a hydrogen storage system, a hydrogen fuel cell, an electrochemical energy storage module, a power conversion system, and a control system. The electrolyzer is configured to separate, via electrolysis, water into hydrogen gas that is stored in the hydrogen storage system; the hydrogen fuel cell is configured to convert the stored hydrogen gas into electrical energy and water. The electrochemical energy storage module is configured to function as an energy buffer; the power conversion system is configured to convert the produced electrical energy to a desired form. The control system is configured to control the storage and distribution of the stored hydrogen and electrical energy in an optimized manner to achieve predefined financial and energy-use objectives.
Resumen de: US2025309303A1
A manufacturing device of a laminated structure body has: a pair of crimping members disposed to face with each other; a cushion material having flexibility and conductivity on a portion of at least one crimping member of the pair of crimping members facing the other crimping member; a crimping device to hold, press, and crimp a plurality of laminated sheet-shaped members between the one crimping member and the other crimping member so as to constitute a laminated structure body; and, a short-circuit inspection circuit that detects presence or absence of a short-circuit spot in the laminated structure body during a process where the crimping device crimps the plurality of sheet-shaped members in one piece to constitute the laminated structure body.
Resumen de: US2025309304A1
A power generation cell including a membrane electrode assembly disposed to cover an opening of a frame, and a first and second separators disposed facing the membrane electrode assembly. The membrane electrode assembly includes an electrolyte membrane, first and second electrode catalyst layers, and first and second gas diffusion layers. The first separator includes first ribs to form partition walls for flow paths for first gas, the second separator includes second ribs to form partition walls for flow paths for second gas having lower pressure than the first gas, an end of the first gas diffusion layer along the first gas is positioned on an inner side closer to center of the opening, compared to an end of the second gas diffusion layer along the second gas, and is positioned on the inner side of ends of the plurality of second ribs.
Resumen de: WO2025201981A1
The invention relates to a cell layer (100) for an electrochemical cell stack (10, 60), in particular a fuel cell stack (10) or an electrolysis cell stack (60), at least comprising a cell frame (120) for radially (Rr) fluid-sealing an electrochemically active region in the cell stack (10, 60), and a membrane (131) arranged within the cell frame (120) for an electrochemical function of the cell stack (10, 60), and the membrane (131) is designed as a membrane-seal device (130), the membrane (131) being part of a membrane-seal device (130), and the membrane (131) has, on/in the radially (Ra) outer circumferential portion (133) thereof, a membrane seal (132) which runs around completely in the circumferential direction (Ur) of the cell layer (100) and which can be or is designed to be fluid-tight with respect to the cell frame (120).
Resumen de: US2025309411A1
The invention relates to a power supply system comprising a modular combination of a hydrogen generation unit, a hydrogen usage unit and a control or regulation unit for controlling or regulating the operation of the hydrogen generation unit and the hydrogen usage unit.
Resumen de: US2025309296A1
A system and a method of controlling the fuel system are introduced. The fuel cell system may comprise a hydrogen tank configured to store hydrogen a fuel cell configured to receive, based on a state of the hydrogen tank, the hydrogen from the hydrogen tank a sensor configured to measure at least one of an output current or an output voltage of the fuel cell and a processor configured to determine the state of the hydrogen tank, wherein the state is associated with an amount of hydrogen filled in the hydrogen tank determine, based on the output voltage of the fuel cell, a purity level of the hydrogen stored in the hydrogen tank, wherein the output voltage is obtained based on the state of the hydrogen tank and open, based on the purity level of the hydrogen being unsatisfactory, a purge valve for discharging residual hydrogen from the fuel cell.
Resumen de: US2025309302A1
The present disclosure relates to a gas-liquid separator including a first pipe member, a second pipe member configured to communicate with the first pipe member and connected to an upper end of the first pipe member based on a gravitational direction, and a gas-liquid separation member provided in the first pipe member and the second pipe member so that droplets contained in air, which moves upward along the first pipe member and the second pipe member, come into contact with the gas-liquid separation member, thereby advantageously and effectively capturing droplets from air discharged from a fuel cell stack.
Resumen de: US2025309293A1
An embodiment of the present disclosure relates to an energy generation system including a first energy generation part configured to generate electrical energy on the basis of an electrochemical reaction of a target fluid, and a second energy generation part configured to operate by receiving water discharged from the first energy generation part and generate electrical energy on the basis of a potential difference made by a movement and evaporation of the water, thereby obtaining an advantageous effect of improving energy generation efficiency.
Resumen de: US2025309367A1
A separable secondary battery stack includes a positive electrode module, a negative electrode module, and an electrolyte module. Every two of the positive electrode module, the negative electrode module, and the electrolyte module are mutually connected by means of a conveying channel in a loop; and the conveying channel is used for conveying an electrolyte.
Resumen de: US2025303839A1
A vehicle frame for a fuel cell includes a first frame, a second frame, and a support frame interconnecting the first frame and the second frame and provided with a fluid tank and a battery mounted thereon. The fluid tank includes a pair of fluid tanks on outer sides of the first frame and the second frame in a width direction, and the battery is disposed between the pair of fluid tanks.
Resumen de: WO2025202210A1
The invention relates to a modular assembly for a solid oxide electrolysis system for producing hydrogen. The assembly comprises at least one module (1) comprising at least one stack (2) of solid oxide plates positioned in a heat chamber (3), pipes for supplying fluids into the stack (2), pipes for discharging fluids from the stack (2), and at least one fluid-heating device allowing the fluid to reach a temperature that is compatible with the operation of the stack (2). The module (1) comprises a first removable part (10) provided with first connectors (4) for fluid pipes, which part comprises the stack (2) of solid oxide plates positioned in the heat chamber (3), and a second fixed part (11) provided with second connectors (5) capable of being connected to and disconnected from the first connectors (4). The second fixed part (11) comprises a distribution network (13) comprising the fluid supply pipes (14) and fluid discharge pipes (15).
Resumen de: WO2025202201A1
The invention relates to a hot box (1) of reversible high-temperature SOEC/SOFC electrolysis stacks (2), comprising a tank (10) accommodating at least two stacks, an inlet (14) and an outlet (15) through which first and second fluids (32) can enter and be discharged, said hot box further comprising a first supply pipe (6) for supplying a third fluid to each of said at least two stacks (2), and which extends from outside said tank to a central shaft (60). The hot box comprises sub-pipes (61) for distributing said third fluid, these each extending from the central distribution shaft to an inlet of a stack, said at least two stacks being positioned at equal distances from said central shaft. The hot box also includes discharge channels (62) which extend from the bottom of each of the stacks, to a second discharge pipe that collects a fourth fluid and discharges it out of said tank.
Resumen de: AU2025230732A1
Abstract A system for controlling an electrochemical production process includes a variable controllable power circuit and an electrolytic cell. The cell includes two electrodes and operates in different possible states dependent on the potential difference across the electrodes. The system includes a power circuit controller that causes the power circuit to apply a given potential difference across the electrodes to initiate operation of the cell in the state associated with the given potential difference. The possible states include a production state associated with a first non-zero potential difference in which a product of interest is produced, and an idle state associated with a second non-zero potential difference in which the product of interest is not produced. A monitoring and control subsystem maintains a predefined set of production process conditions, including a predefined operating temperature range, while the cell operates in both the production state and the idle state. Abstract A system for controlling an electrochemical production process includes a variable controllable power circuit and an electrolytic cell. The cell includes two electrodes and operates in different possible states dependent on the potential difference across the electrodes. The system includes a power circuit controller that causes the power circuit to apply a given potential difference across the electrodes to initiate operation of the cell in the state associated with the given potenti
Resumen de: AU2024374500A1
The present application provides a bipolar plate structure and a manufacturing method therefor, and a flow battery. The bipolar plate structure comprises a bipolar plate body, wherein each of two side surfaces of the bipolar plate body comprises a coverage area that is covered by an electrode and a circumferential edge area that is not covered by the electrode, the circumferential edge area is covered by a shell, the shell is made of modified polypropylene, and the modified polypropylene is formed by blending and modifying polypropylene-grafted maleic anhydride, maleic anhydride grafted with an ethylene-octylene copolymer, and polypropylene. Since the edge area of the body of the bipolar plate structure of the present application is covered by the shell having enhanced mechanical properties, ageing resistance, oxidation resistance and other performance, the leakage problem is avoided, and the overall performance and system stability of a flow battery are improved.
Resumen de: AU2024374499A1
Provided in the present application is a flow battery. In the flow battery, the opposite sides of any adjacent frames are provided with a main engagement protruding portion, a main engagement recessed portion, a first electrolyte inlet channel, a first electrolyte outlet channel, a second electrolyte inlet channel and a second electrolyte outlet channel, wherein the main engagement protruding portion engages with the main engagement recessed portion to form a main sealing engagement path; the first electrolyte inlet channel, a first cavity and the first electrolyte outlet channel are in communication with one another; the second electrolyte inlet channel, a second cavity and the second electrolyte outlet channel are in communication with one another; and at least one of the first electrolyte inlet channel, the first electrolyte outlet channel, the second electrolyte inlet channel and the second electrolyte outlet channel is separated by means of the main sealing engagement path. Between adjacent frames, at least one of the first electrolyte inlet channel, the first electrolyte outlet channel, the second electrolyte inlet channel and the second electrolyte outlet channel is separated by means of the main sealing engagement path, thereby providing advantages such as simple production processes, low production costs and good sealing effects.
Resumen de: WO2025202474A1
An electrochemical apparatus comprising: an anode; a bipolar membrane; an anion exchange membrane; a cation exchange membrane; and a cathode; wherein: the anode at least partially defines a first fluid flow path; the anode and/or the first fluid flow path is in contact with the anion exchange membrane of the bipolar membrane; a second fluid flow path is defined between the cation exchange membrane of the bipolar membrane and the anion exchange membrane; a third fluid flow path is defined between the anion exchange membrane and the cation exchange membrane; the cathode at least partially defines a fourth fluid flow path; and the cation exchange membrane is in contact with the cathode and/or the fourth fluid flow path.
Resumen de: WO2025202358A1
The present invention relates to an electrolyte solution for a redox flow battery with organic compounds from a specific group of ketazines of the following formula (I) as a redox system. The present invention further relates to a method of operating an electrically rechargeable redox flow battery and to the use of organic compounds of the formula (I) and the oligomers and polymers thereof as a redox system for storing and releasing electrical energy.
Resumen de: WO2025202580A1
The present invention relates to the implementation of processes for co-casting and/or co-extrusion coupled with phase inversion. More precisely, the present invention relates to a process for co-casting and/or co-extrusion by phase inversion comprising the following steps: - a step of shaping by co-casting and/or co-extrusion of a polymer solution loaded with ceramic powder and a gelled water; and - a step of phase inversion, the steps of casting or extrusion and phase inversion being carried out simultaneously. The present invention also relates to a strip, preferably a ceramic strip or ceramic-metal strip, obtained by the process as defined hereinbefore. The present invention also relates to a tube, preferably a ceramic tube, obtained by the process as defined hereinbefore. The present invention also relates to the use of the process as defined hereinbefore for the manufacture of strips, preferably ceramic strips and/or ceramic-metal strips or tubes, preferably ceramic tubes. The present invention also relates to the use of the process as defined hereinbefore or of the strip, preferably of the ceramic strip, as defined hereinbefore, or of the tube, preferably of the ceramic tube as defined hereinbefore, for the manufacture of membranes, preferably ceramic membranes such as ceramic-metal (cermet) membranes, the manufacture of filters, preferably ceramic filters and/or the manufacture of electrochemical cells, preferably the manufacture of fuel cells and the manufacture of e
Resumen de: WO2025202152A1
According to the invention, the technology disclosed here relates to a fuel cell system (10) having a fuel cell (11) with an anode (12) and a cathode (13), a cathode inlet path (14) for conducting cathode gas into the cathode (13), a cathode outlet path (15) for conducting process gas from the cathode (13) into the surroundings of the fuel cell system (10), wherein a compressor (16) for compressing the cathode gas is arranged in the cathode inlet path (14), wherein a turbine (17) which can be driven by process gas is arranged in the cathode outlet path (15), and an overload clutch (18) for overload-controlled torque transmission is arranged between the compressor (16) and the turbine (17). The technology according to the invention also relates to a vehicle (100) having the fuel cell system (10).
Resumen de: AU2024250115A1
The present application relates to an electrolyser cell unit having a cell layer (1314) comprising an electrochemically active cell area (1350), the cell layer (1314) having a first side (1315a) and a second side (1315b). The cell unit defines a first fluid flow region (1360) for delivery of fuel to the first side (1315a) of the cell layer (1314) and a second fluid flow region (1365) for exhaust of a fluid from said second side (1315b) of the cell layer (1314). The cross-sectional area of the second fluid flow region (1365) is smaller than the cross-sectional area of the first fluid flow region (1360).
Resumen de: AU2024274080A1
Provided are methods and systems for combining hydrogen supply and fuel cell processes for increased efficiency of electricity generation. The method may include decomposing methane to produce at least hydrogen, introducing at least a portion of the hydrogen to a fuel cell to generate at least electricity and heat, and capturing at least a portion of the heat from the fuel cell to reduce an electricity requirement for the methane decomposition. The system may include a methane preheater, a reaction system, a hydrogen storage system, a hydrogen fuel cell, and a heat recovery unit. The reaction system may comprise one or more reaction chambers containing a liquid base fluid, carrier droplets and a catalyst, wherein the reaction system is configured to decompose methane. The heat recovery unit may be configured to supply waste heat from the hydrogen fuel cell to the methane preheater.
Resumen de: AU2024234821A1
The invention relates to a fuel cell installation (10) comprising: - a solid oxide fuel cell unit (30) comprising a first inlet for introducing a heated fuel feed flow (50), a second inlet for introducing a heated oxygen-rich gas flow (52), a first outlet for recovering an anodic gas flow (18), and a second outlet for recovering a cathodic gas flow (20), - a first heat exchanger system (42) for heating a fuel feed flow and a second heat exchanger system (44) for heating the oxygen-rich gas flow, each heat exchanger system comprising an enclosure (420, 440) defining a vertical circulation pipe (422, 442) and a tube bundle system arranged in the circulation pipe. Each of the first and second outlet emerges at the bottom of the circulation pipe of the first, respectively second, heat exchanger system so that the anodic, respectively cathodic, gas flow circulates from bottom to top in crossflow through the or each tube bundle (74) of the first, respectively second, heat exchanger system.
Resumen de: WO2025202220A1
The present invention relates to a metal fiber having an anisotropic surface texture, comprising: a first end region on a first end of the metal fiber having a smooth surface; and a second end region on a second end of the metal fiber having a non-smooth surface.
Resumen de: WO2025201926A1
The invention relates to tensioning band (10) for strapping fuel cell stack (20), wherein the fuel cell stack (20) is configured to be subjected to predetermined cyclically varying dimensions and wherein the tensioning band includes two end portions (12a, 12b) and an elastic compensation structure (14a, 14b) capable of compensating for the predetermined length variations of the tensioning band (10) corresponding to the cyclically varying dimensions of the object, wherein, in a tightened configuration of the tensioning band (10), at least a centre portion the compensation structure (14a,15 14b) has a periodic, corrugated profile with an amplitude A and period L. It is proposed that, in a first region around a maximum and a minimum turning point of the corrugated profile, a curvature of the profile is at least 5% smaller than the curvature of a sine profile with the same amplitude A and period L at its maximum or minimum turning points.
Resumen de: WO2025201852A1
The present disclosure relates to fuel cell membrane electrodes and fuel cell systems and electrical devices having the membrane electrodes. The fuel cell membrane electrode includes a proton exchange membrane, a cathode catalyst layer disposed on a cathodic side of the proton exchange membrane. The fuel cell membrane electrode also includes a cathode gas diffusion layer disposed on an outer side of the cathode catalyst layer, an outer surface of the cathode gas diffusion layer having a first region in contact with a bipolar plate and a second region not in contact with the bipolar plate. Further, the fuel cell membrane electrode further comprises a hydrophobic layer disposed on an outer side of the cathode gas diffusion layer, wherein the hydrophobic layer has hydrophobic properties and the hydrophobic layer covers at least a portion of a region in the second region. This approach preserves moisture in the membrane electrodes, improves the performance and lifespan of fuel cells, and provides cost savings.
Resumen de: US2025309301A1
An electrochemical power system is provided that generates an electromotive force (EMF) from the catalytic reaction of hydrogen to lower energy (hydrino) states providing direct conversion of the energy released from the hydrino reaction into electricity, the system comprising at least two components chosen from: H2O catalyst or a source of H2O catalyst; atomic hydrogen or a source of atomic hydrogen; reactants to form the H2O catalyst or source of H2O catalyst and atomic hydrogen or source of atomic hydrogen; and one or more reactants to initiate the catalysis of atomic hydrogen. The electrochemical power system for forming hydrinos and electricity can further comprise a cathode compartment comprising a cathode, an anode compartment comprising an anode, optionally a salt bridge, reactants that constitute hydrino reactants during cell operation with separate electron flow and ion mass transport, and a source of hydrogen. Due to oxidation-reduction cell half reactions, the hydrino-producing reaction mixture is constituted with the migration of electrons through an external circuit and ion mass transport through a separate path such as the electrolyte to complete an electrical circuit. A power source and hydride reactor is further provided that powers a power system comprising (i) a reaction cell for the catalysis of atomic hydrogen to form hydrinos, (ii) a chemical fuel mixture comprising at least two components chosen from: a source of H2O catalyst or H2O catalyst; a source o
Resumen de: WO2024199733A1
The plant comprises a heat exchanger adapted to receive a compressed inlet flue gas stream and condense CO2 contained in the compressed flue gas stream. The plant further comprises separation drums adapted to receive a chilled flue gas stream containing at least partly liquefied CO2 from the heat exchanger, and to separate liquid CO2 from the chilled flue gas stream. The pressurized CO2 collected at the liquid outlet of the separation drums flows through a pressurized CO2 outlet duct extending through the heat exchanger without expansion. The resulting liquefied or supercritical carbon dioxide at the outlet of the heat exchanger does not require to be compressed again. A refrigeration circuit removes heat from the inlet flue gas streaming through the heat exchanger.
Resumen de: US2025302346A1
A method for making an enzyme membrane for a working electrode of a continuous biological monitor includes making an aqueous silicone dispersion and making an acrylic polyol emulsion. The silicone dispersion and the acrylic polyol emulsion are mixed to make a base emulsion. An enzyme is added to the base emulsion to create an enzyme/base emulsion dispersion. The enzyme is selected according to a biological function to be monitored. The enzyme/base emulsion dispersion is applied to the working electrode. The applied enzyme/base emulsion dispersion is cured.
Resumen de: US2025304036A1
A control apparatus for a fuel cell electric vehicle is applied to the fuel cell electric vehicle having a water storage tank configured to store water produced in a fuel cell configured to generate an electric power to drive the fuel cell electric vehicle. The control apparatus comprises a camera configured to obtain image data by taking a picture of a scene of surrounding area of the fuel cell electric vehicle; and a controller configured to control drainage of the water from the water storage tank. The controller is configured to: execute a driving assistance control to move the fuel cell electric vehicle from a current position to a predetermined target position, based on the obtained image data; and control the drainage of the water based on the image data, while the driving assistance control is being executed.
Resumen de: US2025304812A1
A method for producing an electrode ink includes a deaerating step of removing a soluble gas that is more soluble in alcohol than nitrogen from each of first feedstock containing a conductive particle, second feedstock containing a polymer material, and a solvent containing water and a water-soluble organic solvent, and a kneading step of mixing the first feedstock from which the soluble gas has been removed, the second feedstock, and the solvent, wherein the kneading step is performed in an atmosphere of a low-solubility gas that is less soluble in alcohol than nitrogen.
Resumen de: US2025304843A1
Substantially water-free, antifreezes for cooling systems can be used as coolants and antifreezes without further dilution with water.
Resumen de: US2025304526A1
The present disclosure concerns the synthesis and investigation of a series of bis-triaryl amine compounds that span a range of multi-electron oxidation potentials. The compounds feature good solubility in acetonitrile and an exceptionally high oxidation potential compared to usual low oxidation potentials of such compounds. Radical cations of the compounds were synthesized and isolated as PF6− salts and characterized. Use of the compounds in a symmetrical RFB showed high cycling stability and capacity retention.
Resumen de: US2025304437A1
The present invention is directed to a catalytic system which can be used to hydrogenate and dehydrogenate a liquid organic hydrogen carrier (LOHC) compound. The catalytic system is composed of a special type of catalyst, a special type of solvent, and an LOHC compound. It can be used to store and release hydrogen upon demand, e.g. for usage in fuel cells of electrically propelled vehicles. Likewise, an apparatus comprising the inventive catalytic system and its use is contemplated.
Resumen de: US2025303330A1
A porous polytetrafluoroethylene (PTFE) membrane including a nonwoven web having a microstructure of substantially only microfibrils fused at crossover points, said membrane having a percent balance of orthogonal dimensions that is within 10%.
Resumen de: US2025305493A1
Gas compression system having a compressor for compressing hydrogen, a recovery device(s) for recovering hydrogen escaping as leakage gas during compression, and a leakage gas return line to return recovered leakage gas into a stage in the gas compression system upstream of the compressor and/or into a suction line of a compressor stage of the compressor. The compressor has a leakage gas discharge line for discharging leakage gas. Each recovery device is fluidically connectable to the discharge and return lines and has a metal hydride reservoir(s) heat-coupled to a respective heat exchanger. Each hydride reservoir has a hydride-forming metal alloy(s) which, when heat is supplied or dissipated through the respective heat exchanger, provides cyclic de- or absorption of leakage gas. Each recovery device increases leakage gas pressure in the discharge line to at least the pressure in the upstream stage and/or the suction pressure in the suction line.
Resumen de: US2025309410A1
A method and apparatus for generating electricity using an electrochemical cell with an aluminum wire as the anode, carbonized luffa sponge as air-cathode, a bioplastic electrolyte, and a common polyethylene sheet as membrane separator. The invention teaches the use of inexpensive materials, and simplified fuel cell construction.
Resumen de: US2025309309A1
A cell unit manufacturing method for a fuel cell including disposing a membrane electrode structure of a cell unit above an upper surface of a table by engaging or fitting a positioned portion provided on an outer edge of a frame member of the membrane electrode structure with a positioning member formed in a rod shape, the positioning member being protruding movably upward and downward from the upper surface of the table; mounting a positioning frame on the positioning member to push the positioning member while positioning the positioning frame using the positioning member; mounting the separator on the membrane electrode structure while positioning an outer edge of a separator of the cell unit using a positioning portion provided on the positioning frame; and welding the membrane electrode structure and the separator in a state where the membrane electrode structure and the separator are positioned.
Resumen de: US2025309292A1
A manufacturing device for a membrane electrode assembly for a fuel cell joins a membrane electrode laminate, having electrodes with gas diffusion layers arranged on both surfaces of an electrolyte membrane, with a frame member integrally joined to a circumferential edge of the electrolyte membrane, to have a membrane electrode assembly. The manufacturing device for a membrane electrode assembly for a fuel cell includes: a mold having a fixed die and a movable die to be moved between a compressing position and a separated position with respect to the fixed die; and a moving mechanism to move the movable die. For the mold, the manufacturing device includes: a heating means to heat the mold; and a humidified gas supply means to supply humidified gas to a surface of the mold.
Resumen de: US2025309295A1
A hybrid fuel cell system is disclosed. The hybrid fuel cell comprises a fuel cell adapted to supply power to a load. The hybrid fuel cell further comprises an Electrical Air Compressor (EAC) unit operatively coupled with the fuel cell. Also, the hybrid fuel cell comprises an auxiliary power source connected to the EAC unit via a Direct Current to Alternative Current (DC-AC) converter. Furthermore, the hybrid fuel cell comprises a converter circuit configured to perform at least one of enable the auxiliary power source to supplement the fuel cell to provide collective power supply to a load during the initialization phase of the fuel cell, enable the fuel cell to provide either the input power supply or a supplement power supply to the EAC unit during an operational phase of the fuel cell, or enable the fuel cell to charge the auxiliary power source.
Resumen de: US2025309299A1
A fuel cell system includes: a housing having a module installation compartment in which a fuel cell module is installed; and a double wall portion with an inner wall and an outer wall. The housing has the outer wall. The module installation compartment has the inner wall. The inner wall has a pressure release part. When a pressure in the module installation compartment reaches a predetermined pressure lower than a pressure capacity of the outer wall, the pressure release part releases the pressure.
Resumen de: US2025309305A1
A solid oxide fuel cell (SOFC) includes a ceramic electrolyte having a thickness of 100 microns or less, an anode laminated to a first side of the electrolyte. and a cathode located on a second side of the electrolyte opposite to the first side.
Resumen de: US2025309298A1
A fuel cell apparatus including a fuel cell, a piping unit including a gas supply path for anode gas and a gas discharge path for anode gas, a hydrogen sensor detecting a hydrogen gas contained in the anode gas, and a gas collection cover covering an upper side of the piping unit and forming a storage space having a recessed shape toward the upper side. The gas collection cover includes a side wall covering a periphery of the storage space, and an upper wall closing an opening at an upper end portion of the side wall, the upper wall has a recessed portion formed in a recessed shape toward the upper side, and is provided with a through-hole around the recessed portion communicating the storage space with an external space, and the hydrogen sensor is provided at a bottom portion of the recessed portion.
Resumen de: US2025309314A1
Provided is a method for disposing a buffer member in a stack case with high accuracy without damaging the buffer member due to contact between the buffer member and a side surface of a stacked cell. A structure of a fuel cell stack includes a stacked cell configured by stacking a plurality of power generation cells, a stack case in which the stacked cell is accommodated, and a buffer member disposed at an inner wall corner of the stack case. Herein, the buffer member includes a resin member disposed to face the inner wall corner, and an elastic member disposed between the resin member and an inner wall surface of the stack case. The elastic member is fitted into and held by a groove provided on the inner wall surface of the stack case.
Resumen de: US2025309316A1
A fuel cell stack including a cell stacked body, a case surrounding the cell stacked body, a closing part disposed adjacent to the cell stacked body and attached to the case to close an opening in an end surface of the case, and partition members to divide a space inside the case and outside the cell stacked body into subspaces including a first and second spaces. A first air port of one of an air inlet and air outlet is provided in the closing part, a second air port of another the air inlet and air outlet is provided in the case to communicate with either the first space or the second space, and the closing part includes a passage forming portion configured to form a communication flow path connecting the first air port, the first space and the second space.
Resumen de: US2025309317A1
A fuel cell system including a power generation module having a substantially rectangular parallelepiped shape, the power generation module including a fuel cell stack generating power by supplying fuel gas to an anode and oxidant gas to a cathode, and a module case that insulates and houses the fuel cell stack, the module case having a fuel gas inlet leading to an inlet of the anode, a fuel off-gas outlet leading to an outlet of the anode, and an oxidant gas inlet leading to an inlet of the cathode; a fuel supply including a fuel supply line connected to the fuel gas inlet of the power generation module and a fuel blower provided in the fuel supply line; and an oxidant supply, wherein the fuel gas inlet and the fuel off-gas outlet are on a same surface of the power generation module, and the fuel supply faces the same surface.
Resumen de: US2025309315A1
Each of unit cells includes a fluid passage which is provided between a membrane electrode structure and a separator; and a connection passage which connects a communication hole and a fluid passage. A fluid manifold is extended in a laminate direction of the unit cells of the laminated cell stack to allow communication holes formed to open in the respective unit cells to communicate with one another, and supplies a fluid to each unit cell. The fluid manifold includes: an inlet portion which is provided with an inlet through which the fluid is allowed flow into one end communicating with an outside of a stack case; and a closed portion on another end which is located on an opposite side from the inlet portion. Then, the inlet portion is provided with a biasing portion which biases the fluid flowing into the fluid manifold to the connection passage side.
Resumen de: WO2025202533A1
An object of the invention is a module arrangement being arranged to a M x N matrix, N being any natural number. A fuel inlet manifold (150) and a fuel outlet manifold (152) form a fuel manifold (171) to deliver supply fuel gas (108) to the stacks and fuel exhaust gas (177) from the stacks, and the stacks been arranged in the manifold in a parallel connection from the fuel gas supply and fuel exhaust gas connection point of view. The inlet manifold (150) comprises gas flow holes of controllable sizes to the stacks (103) for forming even gas flow to the stacks, and the outlet manifold (152) comprises gas flow holes of controllable sizes to the stacks (103) for forming even gas flow from the stacks. The inlet manifold (150) comprising a connection structure (160), and a flow element (320) braking the main flow stream coming from the gas inlet connection (160), and the inlet manifold (150) comprising a gas volume (300) between the flow element braking the main flow stream and inlet manifold connection structure, and at least one of the inlet manifold and the outlet manifold comprising two layer structure comprising a gas tight cover structure (330) and inner heat insulation structure (310), and the module arrangement comprises a first gas seal (155) on the gas tight cover structure, a first electrical insulation plate (119) and a second gas seal (156) between the manifold (171) and the stack (103). On top side (122) and on bottom side (124) of the cell stack (103) the module arr
Resumen de: WO2025201610A1
The invention relates to a method for producing syngas from carbonaceous feedstock comprising two or more different compositions of carbonaceous material (e.g. plastics, textiles, biomass, organic matter, natural gas, biogas, carbon dioxide, waste gases), the method comprising: Gasification of the waste feedstock by feeding the feedstock into a primary reaction zone, hereby generating a first output stream; Feeding the first output stream from the first reactor into a secondary reaction zone hereby generating a second output stream; Feeding the second output stream into a cleaning and conditioning reaction zone, hereby generating a third output stream Feeding the third output stream from the cleaning and conditioning reaction zone into a product synthesis reaction zone hereby generating a fourth output stream; Separating the fourth output stream from the product reaction into a fifth liquid crude product stream which is sent for further treatment (e.g., distillation) and at least a sixth and a seventh gas stream; At least part of the sixth gas stream is recycled to the product synthesis reaction zone; At least part of the seventh gas stream is looped back to the primary reaction zone for further conversion; Gasification parameters for the first and the second reaction zones are controlled to take into account the composition and amount of the recycled gas streams; and Providing a solid oxide electrolysis system (SOEC) to create a hydrogen and oxygen input to the process; Prov
Resumen de: WO2025201590A1
An arrangement (1) of electrochemical cells (2), in particular electrolysis cells, comprises a hydraulic compression device (7) which has a plurality of pistons (18) each guided within a cylinder (15, 16) and which is designed to exert a compressive force on the stacked cells (2). The cylinders (15, 16) are connected to one another by at least one transverse connection (12, 13) provided for pressure equalization.
Resumen de: WO2025201728A1
The invention relates to a method for producing an electrically conductive contact layer on an oxidation-loaded component, in which a component comprising a titanium-based alloy (27), which comprises at least one noble metal in a titanium matrix (33) as an alloy element, is provided. An etching agent is applied to a surface (35) of the component, material of the titanium matrix (33) being selectively removed. As a result, material of the alloy element is exposed such that an electrically conductive contact layer (29) comprising the noble metal is formed close to the surface. The contact layer (29) can optionally be configured as a porous layer having a porosity that can be adjusted by means of the etching process. The method can be used to produce a contact layer on oxidation-loaded components of an electrochemical cell, such as components of an electrolysis cell (1) or a fuel cell, in particular a bipolar plate (21a, 21b) or a gas diffusion layer (11a, 11b) having a titanium-based alloy (27).
Resumen de: MX2025010333A
The present disclosure relates to fuel cells comprising fuel storage materials made from mesoporous N-doped carbon materials. The fuel storage materials comprise a proton conducting polymeric material and a composite material comprising a scaffold of coalesced (N-doped) carbon nanofoam particles, and a coating on the scaffold, said coating comprising N-doped graphitic carbon. The fuel storage materials allow fuel reserves to be stored inside the fuel cell, and are typically incorporated adjacent to an electrode to provide fuel to the electrode when the fuel cell is operating in redox mode.
Resumen de: WO2024110962A1
A portable electricity production device is disclosed. The devoice comprising: a container comprising: a reservoir comprising hydride salt powder; a selective membrane covering the container and configured to allow an entrance of water molecules into the container and restricts the exit of hydrogen molecules from escaping the container; a first membrane exchange assembly (ME A) electrode attached to an inner side of the selective membrane facing the reservoir; and a outer electrode attached to an outer side of the selective membrane, opposite to the inner electrode, and exposed to the oxygen in the air, wherein the selective membrane is further configured to transfer either protons or hydroxide anions from the inner electrode to the outer electrode.
Resumen de: JP2025142729A
【課題】ユーザが享受できるメリットの毀損を低減する燃料電池システムを提供する。【解決手段】燃料電池システムは、電力系統と系統連系される燃料電池部と、燃料電池部が発電した発電電力を変換して出力電力を出力する電力変換部と、電力系統及び電力変換部の少なくとも一方から電力供給可能な電力負荷部と、湯水を加熱することにより電力変換部からの出力電力を消費可能な電力消費部と、制御部と、を備え、制御部は、逆潮流電力を所定値以下に抑制する必要が生じた場合において、燃料電池部が設置された施設における熱需要の有無を判定し、熱需要が有ると判定すると、電力消費部を作動させて熱需要に対応する電力を消費させつつ、燃料電池部の動作を制御して逆潮流電力が所定値以下になるようにし、熱需要が無いと判定すると、電力消費部を作動させることなく、燃料電池部の動作を制御して逆潮流電力が所定値以下になるようにする。【選択図】図2
Resumen de: JP2025142728A
【課題】高い耐久性を有する燃料電池システムを提供する。【解決手段】燃料電池システム100は、湯水が流れる湯水流路512を有し、ホットモジュール1から排出される排ガスと湯水との間で熱交換を行う熱交換器51と、湯水が循環する湯水循環回路L6と、湯水を湯水循環回路L6で循環させる湯水循環ポンプ62と、湯水循環ポンプ62の動作を制御する制御部10と、を備え、制御部10は、湯水流路512が閉塞傾向であるか否かを判定する閉塞傾向確認処理を実行し、閉塞傾向確認処理において、湯水流路512が閉塞傾向であると判定すると、湯水流路512の閉塞傾向を解消するための閉塞解消モード、又は、湯水流路512の閉塞傾向を軽減するための閉塞軽減モードを実行し、閉塞解消モードと閉塞軽減モードとにおいて、出力が異なるように湯水循環ポンプ62の動作を制御する。【選択図】図1
Resumen de: JP2025142737A
【課題】コンパクトな構成で、湯水を有効活用可能な燃料電池システムの提供。【解決手段】第一の住戸に配置された第一燃料電池ユニットと第二の住戸に配置された第一燃料電池ユニットとの夫々に、燃料電池Nと、燃料電池Nの排熱によって熱せられた湯水を貯湯する貯湯タンクTと、貯湯タンクT内の湯水の温度を検出する温度センサSと、貯湯タンクT内の湯水の給排を制御する制御部H4と、判定部H2と、が備えられている。第一燃料電池ユニット及び第二燃料電池ユニットの制御部H4は、通湯管31を通じて第一貯湯タンクT内の湯水を第二貯湯タンクTへ供給する融通制御を実行するように構成されている。【選択図】図2
Resumen de: JP2025142739A
【課題】燃焼排ガス路での煤などの異物の堆積を抑制可能な燃料電池システムの提供。【解決手段】燃料電池システムは、セルスタック7の動作を開始する起動工程においてセルスタック7の動作を停止させる必要が生じた場合、燃焼排ガス路18においてオフガスの燃焼に伴って発生する異物の堆積が進行している可能性が高いことを示す異物堆積条件が満たされない場合、改質部8への原燃料の供給を停止し且つセルスタック7への空気の供給を継続する冷却処理を行い、異物堆積条件が満たされる場合、改質部8への原燃料の供給を継続し且つセルスタック7への空気の供給を継続して燃焼部9でのオフガスの燃焼を継続する燃焼継続処理を行い、燃焼継続処理を行うことで燃焼排ガス路18を流れる燃焼排ガスの温度が所定温度以上になる状態が所定時間継続した場合に燃焼継続処理を停止して冷却処理を行う。【選択図】図1
Resumen de: JP2025142731A
【課題】燃焼を安定させることができる燃料電池システムを提供する。【解決手段】燃料電池システム100は、セルスタック14、改質部13、燃焼部15、アノードオフガス供給路L14、カソードオフガス供給路L15、及び、燃焼排ガス路L16を有するホットモジュール10と、燃焼排ガス路L16を流通する燃焼排ガスと冷媒とを熱交換する熱交換器51と、を備え、原燃料を、改質部13及びセルスタック14を迂回してアノードオフガス供給路L14に供給する原燃料バイパス路LB1と、酸化剤ガスを、セルスタック14を迂回してカソードオフガス供給路L15に供給する酸化剤ガスバイパス路LB2と、燃焼部15からの燃焼排ガスを、熱交換器51を迂回して燃焼排ガス路L16に供給する燃焼排ガスバイパス路LB3とのうち、少なくとも一つを備える。【選択図】図1
Resumen de: JP2025142740A
【課題】燃焼部での爆発的な着火の発生をできるだけ抑制できる燃料電池システムを提供する。【解決手段】燃料電池システムであって、燃焼部9で高濃度の可燃性成分への着火が発生したこと、及び、燃焼部9で高濃度の可燃性成分への着火の可能性が高くなっている状態の少なくとも一方を検出する特定着火検出部25を備え、動作制御部21は、セルスタック7の起動時にアノード4に第1ガスを供給し且つカソード6に第2ガスを供給している間に着火器20を着火作動させる着火処理を行った後、特定着火検出部25によって燃焼部9で高濃度の可燃性成分への着火が発生したこと、及び、燃焼部9で高濃度の可燃性成分への着火の可能性が高くなっている状態の少なくとも一方が検出された場合、アノード4への第1ガスの供給を停止させる第1ガス停止処理を行う。【選択図】図1
Resumen de: JP2025142738A
【課題】効率よく燃料電池を稼働させ続けられる燃料電池システムの提供。【解決手段】水素の供給により発電する燃料電池と、燃料電池の排熱を湯水に蓄熱する貯湯タンク8と、を有する蓄熱ユニットと、貯湯タンク8に貯湯された湯水を消費する第一消費部80と、複数の蓄熱ユニットの夫々の貯湯タンク8に対応して設けられ、貯湯タンク8から第一消費部80へ湯水を供給する際の湯量を調節する複数の調節機構56と、第一消費部80の要求に応じて複数の調節機構56の状態を変更させることによって複数の蓄熱ユニットの少なくとも一つから第一消費部80への湯水の供給を現出させる状態変更部90と、が備えられている。【選択図】図2
Resumen de: JP2025142735A
【課題】流量計が検出した空気の通流量が、実際の空気の通流量か、実際の空気の通流量よりも低い通流量かを制御部が判断することができる燃料電池システムを提供する。【解決手段】燃料電池システムAは、セルスタック6と燃焼部8とを内部空間9sに収容する収納容器9、空気ブロア7と収納容器9とを接続し間に流量計22が配置された空気供給路13、及び制御部10を備えている。制御部10は、空気供給路13を通流する空気の通流量を取得し空気ブロア7への通電のデューティ比を制御して通流量を制御する。制御部10は、所定通流量を通流させるためのデューティ比が所定デューティ比よりも所定割合以上大きくなる期間が所定期間以上継続し、且つ、低出力通流量を通流させるためのデューティ比が低出力デューティ比よりも所定割合以上大きくなるとき、流量計22が実際の通流量よりも少ない通流量を検出していると判断する。【選択図】図1
Resumen de: US2025293276A1
A control device calculates a required startup power as an electric power required to start a fuel cell system (referred to as an “FCS”). The control device sets priorities indicating order of startups on the plurality of FCSs according to the temperature and the required startup power of each of the FCSs, and a remaining capacity of a battery, and start the plurality of FCSs in accordance with the priorities.
Resumen de: US2025260234A1
The present disclosure is directed to a system that employs fuel cell-based power generation for decentralized data centers that perform large, processing intensive tasks, such as training processes for large artificial intelligence models. The system utilizes various modules, such as energy storage systems, load banks, and other types of loads, to supplement power output by the fuel cells, as well as store any excess power generated by the fuel cell systems. As a result, swings in the power output by the fuel cell systems are minimized and the life of the fuel cell systems may be extended.
Resumen de: JP2025142734A
【課題】起動工程において、燃料電池の温度を可能な限り長時間かけて緩やかに上昇させることが可能な燃料電池システムを提供する。【解決手段】燃料電池システムは、施設に設置されて電力を出力可能な燃料電池1と、燃料電池1に供給される燃料ガスの量、空気の量、及び水の量を制御する運転制御部Cと、を備える。運転制御部Cは、燃料電池1の起動工程の開始前又は起動工程の途中において、出力減要請及び系統異常情報のうち少なくとも1つを受け取ったときに、燃料電池1の温度を通常昇温処理に要する時間よりも長時間かけて緩やかに上昇させる長時間昇温処理を実行した後に電力が出力可能になるように構成されている。【選択図】図2
Resumen de: JP2025142736A
【課題】微粒子状物質による詰まりを良好に解消することができる燃料電池システムを提供する。【解決手段】燃料電池システムAは、セルスタック6と燃焼部8とを内部空間9sに収容する収納容器9、空気フィルター21と空気ブロア7と収納容器9とを接続し間に流量計22が配置された空気供給路13、及び制御部10を備えている。制御部10は、空気供給路13を通流する空気の通流量を取得し空気ブロア7への通電のデューティ比を制御して通流量を制御する。制御部10は、デューティ比と空気の通流量とに基づいて、空気フィルター21、空気ブロア7、及び空気供給路13を含む空気供給系統23の閉塞度を算出すると共に外気温を取得し、閉塞度に基づいて空気通流改善運転の実行を開始させ、閉塞度と外気温とに基づいて、空気供給系統に供給する水蒸気の生成量を決定する。【選択図】図1
Resumen de: US2024072339A1
A method and a system for integrating renewable power with a natural gas hydrogen production plant are provided. An exemplary method include generating electricity and a reformed hydrogen stream in a solid oxide fuel cell (SOFC) stack, and providing the electricity to an electrolyzer to generate an electrolysis hydrogen stream. A second stream of electricity is generated in a renewable energy facility, when available, and providing the second stream of electricity to the electrolyzer to increase the generation of the electrolysis hydrogen stream.
Resumen de: MX2025002242A
Liquefaction systems and methods are disclosed that are adapted to process a natural gas stream having a substantial concentration of hydrogen and where the concentration of hydrogen may vary in the natural gas stream. In some implementations, an expanded liquefied natural gas stream may be separated into a hydrogen enriched endflash stream and a hydrogen depleted LNG stream, and a second gaseous hydrogen depleted stream may be produced from the hydrogen enriched endflash stream and/ the hydrogen depleted LNG stream. In other implementations, the pressure of the endflash compressor may be controlled for the purpose of maintaining a hydrogen concentration in a fuel stream (often the endflash stream) within a desired range. Some implementations may include pre- or post- liquefaction purification using, for example, membranes, adsorption, partial condensation, distillation, stripping, and electrochemical membranes.
Resumen de: CN119908039A
Disclosed is an electrochemical cell having: a porous metal support; at least one layer of a first electrode on the porous metal support; a first electron blocking electrolyte layer of rare earth doped zirconia on the at least one layer of the first electrode; and a second bulk electrolyte layer of rare earth doped cerium oxide on the first electron blocking electrolyte layer. The first electron blocking electrolyte layer of rare earth doped zirconia may have a thickness of 0.5 mu m or more, and the second bulk electrolyte layer of rare earth doped ceria may have a thickness of 4 mu m or more.
Resumen de: EP4625561A2
Embodiments are directed to composite membranes having: increased volume of the microporous polymer structure relative to the total volume of the PEM; decreased permeance and thus increased selectivity; and lower ionomer content. An increased amount of polymers of the microporous polymer structure is mixed with a low equivalent weight ionomer (e.g., < 460 cc/mole eq) to obtain a composite material having at least two distinct materials. Various embodiments provide a composite membrane comprising a microporous polymer structure that occupies from 13 vol% to 65 vol% of a total volume of the composite membrane, and an ionomer impregnated in the microporous polymer structure. The acid content of the composite membrane is 1.2 meq/cc to 3.5 meq/cc, and/or the thickness of the composite membrane is less than 17 microns. The selectivity of the composite membrane is greater than 0.05 MPa/mV, based on proton conductance and hydrogen permeance.
Resumen de: EP4625553A1
A fuel cell system (10) includes: a plurality of power generation modules (30) each including a fuel cell stack (31) and a module case (35), the fuel cell stack (31) generating power with fuel gas supplied to an anode and oxidant gas supplied to a cathode, the module case (35) having a heat insulating property and housing the fuel cell stack (31); a plurality of fuel supply systems (40) including a plurality of fuel supply lines (41), respectively, each of the fuel supply lines (41) supplying the fuel gas to corresponding one of the plurality of power generation modules (30); a plurality of circulation systems (60) including a plurality of recirculation lines (63), respectively, each of the recirculation lines (63) causing fuel off-gas discharged from corresponding one of the plurality of power generation modules (30) to pass through corresponding one of heat exchangers (62) and then to be recirculated to corresponding one of the fuel supply lines (41); a plurality of condensed water tanks (66) each storing condensed water obtained by condensation in corresponding one of the heat exchangers (62) of water vapor contained in the fuel off-gas in corresponding one of the plurality of circulation systems (60); and a frame (21) that supports the plurality of power generation modules (30), the plurality of fuel supply systems (40), and the plurality of condensed water tanks (66), wherein the plurality of condensed water tanks (66) are installed in a space defined below installation
Resumen de: EP4625555A2
A fuel cell system (10) includes: a power generation module (30) including a fuel cell stack (31) that generates power with fuel gas and oxidant gas, the fuel gas being at least one of hydrogen gas and ammonia gas supplied to an anode, the oxidant gas being supplied to a cathode, and a module case (35) that has a heat insulating property and houses the fuel cell stack (31); a fuel supply system (40) including a fuel supply line (41) and a fuel blower (43), the fuel supply line (41) being connected to a fuel inlet (GI) leading to an inlet of the anode of the power generation module (30) and a fuel supply source (1), the fuel blower (43) being provided in the fuel supply line (41); a circulation system (60) including a fuel off-gas line (61) connected to a fuel off-gas outlet (FO) leading to an outlet of the anode of the power generation module (30), a heat exchanger (62) provided in the fuel off-gas line (61), and a recirculation line (63) connected to a downstream side of the heat exchanger (62) in the fuel supply line (41) and the fuel supply line (41); and a condensed water line (68) that branches from the downstream side of the heat exchanger (62) in the fuel off-gas line (61) and discharges condensed water obtained by water vapor contained in the fuel off-gas being condensed by the heat exchanger (62), wherein the recirculation line (63) is connected to the fuel supply line (41) at a position above a branch point (J2) between the fuel off-gas line (61) and the condensed w
Resumen de: EP4625554A2
A fuel cell system (10) includes: a power generation module (30) having a substantially rectangular parallelepiped shape, the power generation module (30) including a fuel cell stack (31) that generates power by fuel gas supplied to an anode and oxidant gas supplied to a cathode, and a module case (35) that has a heat insulating property and houses the fuel cell stack (31), the module case (35) being formed with a fuel gas inlet (GI) leading to an inlet of the anode, a fuel off-gas outlet (FO) leading to an outlet of the anode, and an oxidant gas inlet (AI) leading to an inlet of the cathode; a fuel supply system (40) including a fuel supply line (41) connected to the fuel gas inlet (GI) of the power generation module (30) and a fuel blower (43) provided in the fuel supply line (41); and an oxidant supply system (50) that supplies the oxidant gas to the oxidant gas inlet (AI) of the power generation module (30), wherein the fuel gas inlet (GI) and the fuel off-gas outlet (FO) are provided on a same surface of the power generation module (30), and the fuel supply system (40) is installed so as to face the same surface.
Resumen de: EP4625556A2
A fuel cell system (10) includes: a power generation module (30) including a fuel cell stack (31) that generates power with fuel gas and oxidant gas, the fuel gas being at least one of hydrogen gas and ammonia gas supplied to an anode, the oxidant gas being supplied to a cathode, a combustion unit (32) that combusts combustible gas introduced from a combustion gas inlet (CI), and a module case (35) that has a heat insulating property and houses the fuel cell stack (31) and the combustion unit (32); a fuel supply system (40) including a fuel supply line (41) and a fuel blower (43), the fuel supply line (41) being connected to a fuel inlet leading to an inlet of the anode of the power generation module (30) and a fuel supply source (1), the fuel blower (43) being provided in the fuel supply line (41); and a circulation system (60) including a fuel off-gas line (61) connected to a fuel off-gas outlet (FO) leading to an outlet of the anode of the power generation module (30), a heat exchanger (62) provided in the fuel off-gas line (61), a combustion gas line (64) branching from a downstream side of the heat exchanger (62) in the fuel off-gas line (61) and connected to the combustion gas inlet (CI) of the power generation module (30), a recirculation line (63) branching from the downstream side of the heat exchanger (62) in the fuel off-gas line (61) and connected to the fuel supply line (41), and a pressure control valve (OF) provided in the recirculation line (63) and adjusting
Resumen de: EP4624019A1
In some examples of this technology, a vehicle is disclosed that includes a fuel cell exhaust system for routing of fuel cell byproducts of the vehicle. The vehicle includes at least two fuel cells. Each of the at least two fuel cells have an exhaust port through which byproducts of fuel cell operation flow. The vehicle includes at least two outlet couplers respectively coupled, at a first end, to the exhaust port of each of the fuel cells. The vehicle includes at least two water separators respectively coupled, at an inlet end, to a second end of each of the at least two outlet couplers. The vehicle includes at least two vertical exhaust pipes respectively coupled to a top side of each of the at least two water separators. The water separators separate water from steam produced by the fuel cells.
Resumen de: EP4625557A2
The risk of breakage of a housing when an explosion occurs in a module installation compartment is reduced, without excessively increasing the pressure capacity of the housing.A fuel cell system includes: a housing having a module installation compartment in which a fuel cell module is installed; and a double wall portion with an inner wall and an outer wall. The housing has the outer wall. The module installation compartment has the inner wall. The inner wall has a pressure release part. When a pressure in the module installation compartment reaches a predetermined pressure lower than a pressure capacity of the outer wall, the pressure release part releases the pressure.
Resumen de: EP4625559A1
According to the present disclosure, a method for controlling a fuel cell device includes receiving a voltage measured at the time of power generation of the fuel cell device and determining whether the degradation level of the fuel cell device is normal based on a comparison of the voltage and a first threshold value that decreases with increasing operational amount of the fuel cell device and that corresponds to the operational amount of the fuel cell device at the measurement time of the voltage.
Resumen de: EP4624071A1
The present invention relates to a metal fiber having an anisotropic surface texture, comprising: a first end region on a first end of the metal fiber having a smooth surface; and a second end region on a second end of the metal fiber having a non-smooth surface.
Resumen de: AU2023384328A1
Energy storage system (1000) for producing, storing and consuming energy comprising an electrochemical reduction CO2 cell unit (110) configured to receive electrical energy, in particular from a renewable energy source, and to perform electrochemical reduction process to produce formic acid (CH2O2), a formic acid storage unit configured to store formic acid (CH2O2) in liquid state received from electrochemical reduction CO2 cell unit (110), a formic acid fuel cell unit (130) configured to perform electrochemical oxidation process producing electrical energy from formic acid (CH2O2) received from the formic acid storage unit (120) and a control unit (180) configured to control supply of formic acid (CH2O2) to and from the formic acid storage unit (120). The energy storage system (1000) is also configured to perform a closed-loop recirculation of carbon dioxide (CO2) from the formic acid storage unit (130) to the electrochemical reduction CO2 cell unit (110).
Resumen de: CN120266301A
A fuel cell is provided with: a substrate (11); a stack (20) against the substrates (11); and a compression system comprising: a support plate (30) movable and resting on the stack (20); the spring (50) abuts against the supporting plate (30); and a flange (40) which abuts against the spring (50). In order to stabilize the fuel cell particularly over time, the fuel cell comprises a first sliding connection (70) for guiding the sliding of the support plate (30) relative to the base plate (11) and pulling plates (60) which are separated from each other and have anchors which fasten them to the base plate (11) and to the flange (40), the first sliding connection (70) being provided for guiding the sliding of the support plate (30) relative to the base plate (11), and the pulling plates (60) being provided for guiding the sliding of the support plate (30) relative to the base plate (11). The stack (20) is held in a compressed state between the base plate (11) and the support plate (30) by means of an anchor under the action of a spring (50).
Resumen de: WO2024109994A1
The invention relates to a muffler (1) for the exhaust gas section of a fuel cell system (2), comprising a muffler device (20) for reducing the sound of the exhaust gas flow (S), a water separating device (30) arranged upstream of the muffler device (20) for separating water from the exhaust gas flow (S), a water collecting chamber (40) which at least partly surrounds at least the water separating chamber (31), and which is fluidically connected to the water separating chamber (31) via a discharge opening (41) such that water separated from the exhaust gas flow (S) can flow out of the water separating chamber (31) and into the water collecting chamber (40) where the water can be collected, and a heating device for heating at least one part of a wall (43) which delimits the water collecting chamber (40).
Resumen de: CN120226176A
The invention relates to a muffler (1) for an exhaust section of a fuel cell system (2), comprising: a cavity (10); a silencing device (20) arranged in the cavity (10) for reducing the noise of the exhaust flow (S); a water separation device (30), which is arranged in the chamber (10) upstream of the sound attenuation device (20), for removing water from the exhaust gas flow (S), the water separation device (30) having: a baffle element (32), which is arranged in the water separation chamber (31), for radially widening the exhaust gas flow (S) flowing in through the inlet opening (11); and a funnel-shaped guide element (33) located downstream of the baffle element (32) for radially narrowing the exhaust gas flow (S) widened by the baffle element (32).
Resumen de: EP4625558A1
Spiral wound water exchangers, power generators comprising the same, and methods of use thereof are provided. The methods include providing a first stream of air having a first humidity to a spiral wound water exchanger, providing a second stream of hydrogen having a second humidity to the spiral wound water exchanger, flowing the air and the hydrogen through the spiral wound water exchanger, wherein water is transported from the air to the hydrogen as the air and the hydrogen flow through the spiral wound water exchanger, expelling a third stream of air having a third humidity from the spiral wound water exchanger, and expelling a fourth stream of hydrogen having a fourth humidity from the spiral wound water exchanger, wherein the third humidity is less than the first humidity and the fourth humidity is greater than the second humidity.
Resumen de: EP4625685A1
Disclosed herein relates to a cell stack assembly with an insulating cover having a structure capable of separating each busbar.The cell stack assembly of the present invention includes: a cell stack including a plurality of cells from which electrode leads are drawn out; a busbar frame assembly including a plurality of busbars electrically connected to electrode leads of the cell stack, a busbar frame supporting the busbar, and ribs spanning between the busbars, and coupled to the cell stack; and an insulating cover coupled to the busbar frame to cover the busbar frame assembly, wherein the insulating cover includes a separation wall member formed at a location corresponding to a rib of the busbar frame assembly.
Resumen de: GB2639690A
A sustainable water fuelled process and apparatus where a Unipolar electrolysis of water is described and the hydrogen and oxygen are stored before feeding a hydrogen fuel cell which is capable of providing sufficient electricity to provide power to a drive a vehicle, power a generator etc, after supplying electricity to the Unipolar electrolyser and the storage of the hydrogen and oxygen.
Resumen de: EP4625552A1
The present disclosure relates to a porous carbon body and, more specifically, to a porous carbon body that satisfies the surface area properties of pores with a size of 2-5 nm, the surface area properties of pores with a size of 2-100 nm, and physical properties in an overlapping graph of a first pore volume distribution graph obtained from nitrogen adsorption isotherms and a second pore volume distribution graph obtained from nitrogen desorption isotherms.
Resumen de: EP4625551A1
The present invention relates to a porous carbon body, and more specifically, to a porous carbon body satisfying the following three physical properties: a surface area physical property of pores having a size of 2 nm to 5 nm; a surface area physical property of pores having a size of 2 nm to 100 nm; and a physical property relating to a delta graph which is a graph of the values of a nitrogen desorption isotherm minus the values of a nitrogen adsorption isotherm in a nitrogen adsorption-desorption isotherm according to relative pressure..
Resumen de: EP4625572A1
A separable secondary battery stack, including a positive electrode module, a negative electrode module, and an electrolyte module. Every two of the positive electrode module, the negative electrode module, and the electrolyte module are mutually connected by means of a conveying channel to form a loop; and the conveying channel is used for conveying an electrolyte.
Resumen de: GB2639679A
A hydrogen storage system 10 for producing, storing, releasing and utilising hydrogen, the system comprising: an electrolyser 12; a hydrogen storage bed 14 comprising a hydrogen storage material disposed therein; and a fuel cell 16. When the system assumes a loading condition, hydrogen is produced by the electrolyzer and loaded into the hydrogen storage bed. When the system assumes an unloading condition hydrogen stored in the H2 storage bed is unloaded and directed towards the fuel cell for producing electricity. A filter may be located between the storage bed and electrolyser, or between the storage bed and fuel cell. The storage bed material may comprise a hydridable metal, optionally depleted uranium. The storage bed may comprise a hydrogen storage body and a thermal transfer element comprising a fin element, e.g. a helical fin, that may allow the redistribution and expansion of the hydrogen storage material within the body.
Resumen de: EP4625560A1
A power generation planning method for a fuel cell device according to the present disclosure includes: receiving a power generation plan for a fuel cell device; storing the received power generation plan for the fuel cell device; and if a next power generation plan is not received and a remaining period of the stored power generation plan is shorter than a predetermined period, using data of the stored power generation plan to add a power generation plan so that the remaining period of the power generation plan is equal to or longer than the predetermined period.
Resumen de: JP2025142730A
【課題】簡便な構成の燃料電池システムを提供する。【解決手段】燃料電池システム100は、燃料ガス及び酸化剤ガスを用いて発電するセルスタック14から排出されるオフガスを燃焼する燃焼部15を有するホットモジュール1と、ホットモジュール1から排出されたガスが流通するガス流通路L7と、ガス流通路L7を流通するガスに含まれる水分を回収する水分回収部71と、ガスの通流方向におけるホットモジュール1の下流側で且つ水分回収部71の上流側に、ガス流通路L7を流通するガスの温度を調整する温度調整部8と、筐体100Hと、を備え、温度調整部8は、第1流路L81と、第1流路L81よりも放熱性能が高い第2流路L82と、を備え、流量調整部82は、外気温の影響を受ける筐体100Hの内部の温度が所定の温度閾値以上になると、第1流路L81を流通するガスの流量を減少させて第2流路L82を通流するガスの流量を増加させる。【選択図】図1
Resumen de: CN223401631U
本实用新型属于全钒液流电池系统领域,公开了一种应用于电解液的空气直接冷却系统。包括开式冷却系统和闭式冷却系统。本实用新型利用空气作为冷却介质,电解液通过流经储罐的空气直接冷却。
Resumen de: CN120727882A
本申请涉及燃料电池系统技术领域,公开了一种燃料电池系统的温度控制方法,包括将动力电池的SOC划分为全力加热区间、动态调整区间以及缓慢加热区间;S2、获取实际环境温度和动力电池的实际SOC;S3、判断实际环境温度是否达到低温阈值;S4、若实际环境温度达到低温阈值,则判断动力电池的实际SOC所处状态区间;S5、根据动力电池的实际SOC所处状态区间调整对燃料电池的加热强度;S6、根据天气预报对未来时段的气温预测获取未来时段环境温度;S7、若未来时段的环境温度达到低温阈值,则执行步骤S4和步骤S5;本申请在保证低温环境下对燃料电池的加热效率的同时,充分利用能源,且提高了系统的稳定性。
Resumen de: WO2024195700A1
This solid oxide-type electrolytic cell system is provided with: a solid oxide-type electrolytic cell; a combustion unit that burns fuel electrode off-gas from a fuel electrode of the solid oxide-type electrolytic cell; a case having heat insulation properties and housing the solid oxide-type electrolytic cell and the combustion part; a water/steam supply unit for supplying water or steam to a fuel supply line connected to the fuel electrode; a preheating unit that is provided in the case and that preheats the water or steam flowing in the fuel supply line by means of combustion heat from the combustion unit; a condensing unit that is provided outside the case and that condenses the steam contained in the fuel electrode off-gas from the fuel electrode; and a recirculation line for combustion for recirculating, by driving a pump, a part of the fuel electrode off-gas that has passed through the condensing unit, and supplying the recirculated fuel electrode off-gas to the combustion unit.
Resumen de: CN120727874A
本发明涉及燃料电池系统,其在使燃料废气通过热交换器并向燃料供给管路回流的系统中,从回流到燃料供给管路的燃料废气中高效地除去冷凝水。燃料电池系统具备:包含燃料电池堆的发电模块、燃料供给系统、循环系统以及冷凝水管路。燃料供给系统包含:与和阳极的入口连结的发电模块的燃料入口及燃料供给源连接的燃料供给管路、以及燃料鼓风机。循环系统包含:连接在与阳极的出口连结的发电模块的燃料废气出口的燃料废气管路、热交换器、与燃料供给管路的热交换器的下游侧和燃料供给管路连接的回流管路。冷凝水管路从燃料废气管路的热交换器的下游侧分支,并排出冷凝水。回流管路在比燃料废气管路与冷凝水管路的分支点靠上方的位置与燃料供给管路连接。
Resumen de: CN120727900A
本发明提供一种燃料电池堆(100)具备:电池层叠体(10)、包围电池层叠体(10)的壳体(30)、与电池层叠体(10)的端面紧贴而配置的封闭部(40)、以及多个分隔构件(50),其以将壳体(30)的内侧面(301)与电池层叠体(10)的外侧面(110)之间的空间分割成多个空间(SP11SP14)的方式延伸。在封闭部(40)设置空气取入口(430),在壳体(30)设置空气排出口(62~64)。封闭部(40)具有形成将空气取入口(430)、多个空间(SP11~SP14)、空气排出口(62~64)连通起来的连通流道(PA1~PA3)的通道形成部(425~427)。
Resumen de: CN120727909A
本发明涉及一种燃料电池系统,其实现燃料电池系统的小型化。燃料电池系统具备:近似长方体状的发电模块,其包含燃料电池堆和模块壳体,并在模块壳体形成有与阳极的入口连结的燃料气体入口、与阳极的出口连结的燃料废气出口以及与阴极的入口连结的氧化剂气体入口;燃料供给系统,其包含与发电模块的燃料气体入口连接的燃料供给管路和设置在燃料供给管路的燃料鼓风机;以及氧化剂供给系统,其向发电模块的氧化剂气体入口供给氧化剂气体。在发电模块的同一表面具有燃料气体入口以及燃料废气出口,燃料供给系统设置为与该同一表面相对。
Resumen de: CN223401632U
本实用新型公开了一种新型液流电池组装线用电堆压紧机构,包括地轨线,地轨线的一侧设有压紧台,压紧台的顶部固定连接有四个定位柱,定位柱的顶部连接有固定顶台,固定顶台的底部设有压紧板,固定顶台的顶部固定安装有伺服气缸,伺服气缸的输出端与压紧板的顶部连接,地轨线的中部设有主轨,地轨线与压紧台之间设有行走小车,压紧台的顶部设有电堆座,压紧台的表面设有车导轨,压紧板的边角均固定连接有导向滑套,导向滑套与定位柱的表面滑动连接,本实用新型一种新型液流电池组装线用电堆压紧机构,整个电堆压紧机构能够自动将电堆产品运输到压紧台进行压紧作业,便于配合整个液流电池组装线的自动化加工,提高加工效率。
Resumen de: CN223399366U
本实用新型公开了一种用于燃料电池系统的氢气流量比例阀,涉及阀门技术领域,包括阀体第一复合轴承和第二复合轴承,所述阀体的内部安装有骨架,且骨架上饶有漆包线,所述骨架上还装有左插针和右插针,且左插针和右插针装配成线圈总成,所述阀体的内部中下方安装有阀芯,且阀芯的下侧安装有硫化橡胶,所述阀芯的上侧安装有磁芯。该用于燃料电池系统的氢气流量比例阀,前轭铁处第一复合轴承和第二复合轴承的应用,采用了标准件,能降低加工难度,保证了磁芯在工作时无卡滞,提高了比例阀性能的稳定性,比例阀体积小型化,复合轴承导向及减摩设计,提高比例阀工作寿命,隔磁套结构能优化弹簧导向,提高弹簧的使用寿命,从而保证比例阀的可重复性。
Resumen de: CN223397811U
本申请属于电化学压缩机技术领域,更具体地说,是涉及一种电化学氢气压缩装置、氢气多级加压系统和氢气供应系统。电化学氢气压缩装置包括EHC电堆,所述EHC电堆包括依次堆叠设置的阳极、交换膜以及阴极;第一管路系统,所述第一管路系统用于为所述阳极提供氢气;第二管路系统,所述第二管路系统用于提供水并润湿所述交换膜以及用于输出所述阴极产生的氢气。本申请提供的电化学氢气压缩装置,省去了外部气化加湿系统和单独的控温设备,简化了结构、降低了成本,解决了现有采用进气管路中的气化加湿出现水蒸气冷凝而引起阳极水淹的问题,提高了电化学氢气压缩装置的稳定性和性能。
Resumen de: CN223396062U
本实用新型公开了一种车载氢系统和燃料电池汽车,包括氢系统框架、容纳腔、减压阀以及多个储氢瓶;储氢瓶的两端分别设有连接端,氢系统框架上设有连接板,连接端与连接板分别对应连接;位于中部的储氢瓶的瓶口处设有瓶口TPRD,位于边侧的储氢瓶的瓶口通过接头和高压管路与瓶口TPRD连接,瓶口TPRD还与容纳腔连接,容纳腔的瓶口通过高压管路与减压阀连接,且容纳腔的瓶口处设有瓶阀,以控制容纳腔与减压阀之间的连通,减压阀将高压氢气减压至燃料电池所需要的压力并供给至燃料电池系统。本实用新型满足安全法规的基础上,可以实现减少瓶阀及TPRD的数量,有效简化布局,提升装配效率及降低成本的作用。
Resumen de: CN120727890A
本发明提供一种发电电池,具备:膜电极结构体,其具有膜电极接合体和支承膜电极接合体的周缘部的框构件;以及第一隔板和第二隔板,它们分别与膜电极结构体的第一表面和第二表面相向地配置。第一隔板和第二隔板具有朝向膜电极接合体突出设置并相互大致平行地延伸的、分别形成第一气体和比第一气体低压的第二气体的多个发电用流道的隔壁的多个第一流道肋和多个第二流道肋。膜电极接合体的第一气体扩散层的沿着第一气体的流动方向的端部位于比膜电极接合体的第二气体扩散层的沿着第二气体的流动方向的端部靠内侧的位置,并且位于比第二流道肋的端部靠内侧的位置。
Resumen de: CN120727865A
本发明提供一种发电电池,具备:膜电极结构体(2),其具有包括电解质膜和电极的膜电极接合体(20)以及支承膜电极接合体(20)的树脂制的框构件(21、22);以及金属制的隔板(3),其以在与膜电极结构体(2)之间形成供反应气体流动的流道的方式,与膜电极结构体(2)相向地配置。框构件(21、22)的外缘部具有比隔板(3)的外缘部(3e)向外侧突出的突出部(22a),并且构成为包括突出部(22a)的外缘的第一区域(AR1)的厚度比第一区域(AR1)的内侧的第二区域(AR2)的厚度厚。
Resumen de: CN120727899A
本发明提供一种燃料电池堆(100),具备电池层叠体(10)、包围电池层叠体(10)的壳体(30)、一端面经由在壳体的侧壁(300)设置的开口(305)与电池层叠体的外侧面抵接而限制电池层叠体在与规定方向正交的方向上移动的限制构件(50)、设置为支承限制构件(50)的另一端面并且覆盖开口的支承构件(56)、将支承构件(56)朝向侧壁(300)的表面按压的按压构件(57)。壳体(30)在侧壁(300)的外侧具有从侧壁的表面隔开规定距离与侧壁大致平行地延伸的外侧侧壁(310),按压构件以限制构件对电池层叠体施加规定的按压力的方式夹设在外侧侧壁与支承构件之间。
Resumen de: CN120727888A
本发明的课题在于提供在保护片剥离时能够仅剥离保护片的膜电极构造体的制造方法及膜电极构造体。膜电极构造体的制造方法具有下述工序:将框状部件载置于吸附板上的框状部件载置工序;以电极催化剂层的外周缘部与框状部件的开口的缘部重叠的方式将电极催化剂层载置于框状部件的电极催化剂层载置工序;将电解质膜载置于电极催化剂层的与框状部件相反一侧的电解质膜载置工序;以及在层叠电解质膜之后剥离保护片的保护片剥离工序。电解质膜的外周缘部配置在比电极催化剂层的外周缘部靠外侧。在电解质膜载置工序中,从电解质膜的外周缘部到开口的缘部依次形成框状部件与电解质膜层叠的双层部以及框状部件、电极催化剂层及电解质膜层叠的三层部。
Resumen de: CN120727870A
本发明提供一种电化学式氢升压系统。电化学式氢升压系统(10、100)具有氢升压堆(16)、电源装置(28)、氢供给装置(14)、存储装置(24)和返回流道(94),其中,氢升压堆具有单体电池,该单体电池包含电解质膜、设置于电解质膜的一表面的阳极电极和设置于电解质膜的另一表面的阴极电极,所述氢升压堆中,向阳极电极供给氢气,由阴极电极将升压的所述氢气导出;电源装置对所述氢升压堆施加电压;氢供给装置向所述氢升压堆供给氢气;存储装置存储由所述氢升压堆导出的所述氢气;返回流道将由所述氢升压堆导出的所述氢气向所述氢供给装置回流,在所述返回流道上设置有存储所述氢气的氢存储罐。据此,能够抑制电化学式氢升压系统的氢制造效率的降低。
Resumen de: CN223401630U
本实用新型提供了一种电解液储罐,包括罐体、集气部、气流管道和氯气处理部,集气部设置在罐体侧边,集气部包括至少两条集气管,每条集气管的进气口都连通至罐体,所有的集气管的出气口都连通至气流管道,且所有的集气管都处于不同的高度,每个集气管上都设置有阀门,气流管道的进气口连通至所有集气管的出气口,气流管道的出气口连通至氯气处理部的进气口,氯气处理部具有氯气吸收剂。本实用新型能够及时处理全钒液流电池的副产物氯气,减少电解液储罐正压危险。
Resumen de: CN120727892A
本发明提供了一种盐包水型半固态悬浮液及其制备方法和应用。本发明的盐包水型半固态悬浮液,组分包括固态活性物、固体导电碳和盐包水型电解液,所述盐包水型电解液包括电解质、水和共溶剂,所述盐包水型电解液的浓度≥10mol/L,所述共溶剂为1,3‑二氧戊环,所述水和共溶剂的体积比为1:1~3。其中,共溶剂分子的加入改变了盐包水型电解液的体相和界面结构,能够同时保持宽的电化学稳定窗口,具有不易燃性和耐低温性。
Resumen de: CN120716498A
本发明公开了一种适用于高原电动农机的移动充电设备及蓄放电方法,包括:半挂式车身、储能车厢、光伏发电与集热装置、太阳能光伏板、蓄电池组、集热装置、电解水制氢池、储氢罐、锅炉装置、汽轮发电机组以及燃料电池发电系统,本发明通过集成太阳能发电与集热、固体氧化物电解水制氢、汽轮机组发电、燃料电池发电等技术,实现对电动农机的便捷补能。该设备为高效、环保的能源供应平台,能够实现自动化控制和远程管理,提高操作的便捷性和效率。同时,采用汽轮机发电和燃料电池技术替代传统柴油发电机,降低污染物排放,符合绿色能源和可持续发展的需求。此外,设备在闲置时可充当储能设备,实现能源的削峰填谷,以促进农业现代化和可持续发展。
Resumen de: CN120727856A
本发明属于燃料电池材料技术领域,具体涉及一种高功率密度抗积碳固体氧化物燃料电池片及其制备方法。该电池片包括阳极层、电解质层和阴极层,其中阳极层为掺杂有SrTiO3和Ni1Cu2的Ni/YSZ复合材料,电解质层为Y2O3、Rb5BiMo4O16和ZrO2制备的复合材料,阴极层为LnBaCo2O5.5+δ稀土钙钛矿材料。本发明通过协同优化各层材料组成及制备工艺,显著提升了电池片的氧离子电导率、气密性和抗积碳能力,实现了高温条件下的高功率密度输出和长期稳定运行。
Resumen de: CN120719296A
本发明公开了一种耐高电位腐蚀复合涂层及其制备方法与应用。所述耐高电位腐蚀复合涂层包括依次形成于作为基体的金属双极板表面的金属过渡层、类石墨非晶碳层和SnO2封孔层;其中,所述SnO2封孔层通过原子层沉积的方式制备得到。本发明提供的耐高电位腐蚀复合涂层通过在非晶碳涂层表面沉积SnO2层,起到封闭非晶碳缺陷的作用,该耐高电位腐蚀复合涂层在1.6V的高电位腐蚀下具有优异的耐腐蚀防护性能。
Resumen de: CN120727891A
本发明涉及电解液修复技术领域,具体涉及一种电解液在线修复装置及方法。该装置用于修复价态失衡的钒电池电解液,该装置包括第一储罐、修复电堆和流向调节组件;所述第一储罐用于盛装修复液;所述修复电堆包括由隔膜分离的正极侧和负极侧;在所述正极侧设置有第一接口和第二接口,所述第一接口和所述第二接口均连接至所述第一储罐;所述负极侧连接至钒电池储能系统中盛装待修复电解液的第二储罐;所述流向调节组件用于调整所述修复液在所述正极侧内的流向。该装置通过优化碳毡结构和修复液循环方式,能够促进修复电堆中反应气体的排出,进而确保钒电池电解液的修复效率。
Resumen de: CN120727905A
本发明属于技术领域,尤其涉及一种氢能源电堆壳体结构;包括:壳体本体,其上设有通风槽;空气引导部,设置在壳体本体内;防水组件,设置在空气引导部的前方;其中,空气引导部包括多个彼此间隔设置的百叶窗组件,相邻的百叶窗组件之间限定有用于引入空气的流入路径;防水组件包括设置在空气引导部前方的挡板,以及设置在挡板上的通孔。挡板结构与百叶窗组件的倾斜设置,阻挡雨水直接侵入壳体内部,避免电子设备因雨水或冷凝水损坏。壳体通过一体成型的复合结构,大幅度减轻重量,提升壳体抗冲击性能、密封性、绝缘和耐腐蚀。本发明提供一种能够在确保通风性能的同时,最大限度地减少外部雨水通过通风孔流入的氢能源电堆壳体结构。
Resumen de: KR20250141979A
본 발명의 일실시예에 따르면, 연료 전지 시스템의 제어 장치는, 연료 전지 시스템의 주변 보조 기기들을 제어하는 메인 컨트롤러 및 상기 주변 보조 기기들 중 적어도 하나와 연결되고, 상기 메인 컨트롤러로부터 수신한 제어 신호에 기초하여 연결된 주변 보조 기기를 제어하고, 연결된 상기 주변 보조 기기로부터 출력되는 출력 값을 수신하는 적어도 하나 이상의 서브 컨트롤러를 포함할 수 있다. 상기 적어도 하나 이상의 서브 컨트롤러 각각은, 연결된 상기 주변 보조 기기로부터 수신한 출력 값을 정규화하여 상기 메인 컨트롤러에 전달할 수 있다. 상기 메인 컨트롤러는, 상기 정규화 된 출력 값에 기초하여 상기 적어도 하나 이상의 서브 컨트롤러에 연결된 주변 보조 기기의 동작 결과를 판단할 수 있다.
Resumen de: US2025296481A1
Proposed is a wading control method of a fuel cell vehicle. The wading control method includes determining, by a controller, whether a fuel cell vehicle requires a wading function, when it is determined that the wading function is required, determining, by the controller, a driving available distance based on a battery state of charge (SOC), determining, by the controller, whether wading is possible, and closing, by the controller, one or more of an air cut-off valve and an air pressure control valve in preparation for performing the wading function.
Resumen de: WO2025198250A1
The present invention relates to a humidifier for a fuel cell, the humidifier comprising: a humidification module; a first cap coupled to one end of the humidification module; and a second cap coupled to the other end of the humidification module, wherein the humidification module includes a mid-case, at least one cartridge, and a partition part dividing the interior of the mid-case into an inflow space and an outflow space, the cartridge includes an inner case, a compartment part, and a plurality of hollow fiber membrane bundles received in each of multiple sub-cartridges, and the compartment part includes differential pressure reduction holes in communication with the inflow space and the outflow space.
Resumen de: AU2024215870A1
Provided is a manufacturing method for a gas diffusion layer 10 that has a carbon fiber layer 10a including carbon fibers and a porous layer 10c including a conductive material and a binding resin. The manufacturing method for the gas diffusion layer 10 uses a spraying method or a vapor phase method to impart a conductive material P from a surface 10b side of the carbon fiber layer 10a of a laminate having the carbon fiber layer 10a and the porous layer 10c. The manufacturing method enables an electrolytically active gas diffusion layer to be manufactured.
Resumen de: CN120718249A
本发明涉及新材料技术领域,尤其涉及一种聚合物、离子交换膜及其制备方法与应用。聚合物具有通式I所示的化合物:;R为;n为主链中未季胺化的哌啶含量,n=0~1;z=n/2。本发明通过采用气‑固反应方法引入封端剂,即通过膜与汽化的封端剂反应。该法对聚合物分子链具有定位效应,使得封端反应发生时,静态的聚合物链与动态的封端剂处于定位定点反应,以防止聚合物链高度运动而自交联。此外,还通过优化封端剂调控三嗪网络交联位点的空间结构,实现同时提升薄膜的稳定性和OH‑电导率的目的。
Resumen de: JP2024132659A
To make it possible to stably supply steam for electrolysis even as a means of utilizing highly variable waste heat, while also improving energy efficiency.SOLUTION: A solid oxide electrolysis cell system comprises a solid oxide electrolysis cell, a heat storage part that stores waste heat from the outside system, and a steam generation part that is provided in a fuel supply line from a water source to a fuel electrode of the solid oxide electrolysis cell and generates steam using the heat stored in the heat storage part, and a heat exchange part that is provided downstream of the steam generation part in the fuel supply line and heats the steam using the waste heat from the solid oxide electrolysis cell.SELECTED DRAWING: Figure 1
Resumen de: CN120727841A
本发明提供一种燃料电池用膜电极结构体的制造方法,在由树脂框构件(21)支承有催化剂覆盖膜(50)的组装件(70)安装气体扩散层(25b),所述催化剂覆盖膜(50)在电解质膜(23)的表面设置有电极催化剂层(25a)而成,所述制造方法包括如下工序:在基台(210)载置组装件(70);在载置在基台(210)的组装件(70),沿着催化剂覆盖膜(50)与树脂框构件(21)之间的接合位置涂敷粘接剂;将气体扩散层(25b)载置在涂敷有粘接剂的组装件(70);以及沿着接合位置对载置在组装件(70)的气体扩散层(25b)进行按压,并且经由气体扩散层(25b),沿着接合位置,向涂敷在组装件(70)的粘接剂喷射固化促进剂。
Resumen de: CN120727904A
本发明提供一种燃料电池堆,具备层叠多个电池单元(1a)而构成的电池层叠体(10)和限制电池层叠体(10)的位置的定位构件(45)。电池单元(1a)具有:膜电极结构体(2),其具有膜电极接合体(20)以及支承膜电极接合体(20)的树脂制的膜构件;以及金属制的隔板(3),其与膜电极结构体(2)相向地配置,在外缘设置有定位部(36)。电池单元(1a)还具有粘贴在从隔板(3)露出的露出部(26)的树脂制的加强构件(52),加强构件(52)具有由定位部(36)定位的第一被定位部(56)和与定位构件(45)卡合或嵌合的第二被定位部(55),第二被定位部(55)的边缘位于与膜构件(21)的外缘(21e)相同的位置或比膜构件的外缘向外侧突出地设置。
Resumen de: CN120716182A
本发明提供能够在抑制框部件的热变形的同时高效地对膜电极构造体进行加热压接的燃料电池用膜电极构造体的制造装置。燃料电池用膜电极构造体的制造装置(A)将在电解质膜(2)的两个面上配置有具有气体扩散层(31)的电极(3)的膜电极接合体(1)和与电解质膜(2)的外周缘一体接合的框部件(4)接合而得到膜电极接合体(1)。燃料电池用膜电极构造体的制造装置(A)包括具有固定模(52)和能够在压接位置及分离位置相对于固定模(52)可动的可动模(51)的模具(5)以及使可动模(51)可动的可动机构(6)。模具(5)包括对模具(5)进行加热的加热机构(7)和向模具(5)的表面供给加湿气体的加湿气体供给机构(8)。
Resumen de: CN120727835A
本申请公开了一种高温SOFC电堆阴极涂层及其制备方法,涉及固体氧化物燃料电池技术领域。一种高温SOFC电堆阴极涂层,按重量份计,阴极涂层的原料包括:锶掺杂镧钴铁氧化物60份‑70份、钆掺杂氧化铈20份‑30份、纳米氧化锆5份‑10份、分散剂20份‑30份和粘结剂2份‑5份。本申请通过锶掺杂镧钴铁氧化物提供电子导电、钆掺杂氧化铈提供离子导电、纳米氧化锆提供结构支撑,各组分的复合优化了电荷传输路径,解决了传统高温SOFC电堆阴极涂层热膨胀系数与电解质不匹配、长期运行稳定性不足的问题,提升了SOFC电堆的整体性能和使用寿命。
Resumen de: CN120727897A
本申请公开了一种高压固体氧化物燃料电池电堆系统,属于燃料电池技术领域。本申请的电堆系统包括外部的耐压容器、耐压容器内部设置的电堆以及用于固定电堆的支撑结构;其中,电堆包括平板式单电池片、连接板、密封层以及气体歧管。本申请通过对气体歧管的扩口改进、对平板式单电池片数量和面积优化、对密封层进行双层设计等,解决了现有技术中气体分布不均、压力管理不善以及材料降解等方面的难题。
Resumen de: CN120727893A
本发明涉及一种燃料电池发电系统及控制方法,包括电堆系统,电堆系统的燃气进口和燃气出口接入燃气侧管路系统中,电堆系统的空气进口通过空气进管连接至空气预热器的冷侧出口,空气出口连接至燃烧器的空气进口,燃烧器的通过第一管路连接至空气预热器的热侧进口,还通过第二管路连接至燃气侧管路系统,空气预热器的冷侧进口与引射器的气体出口连接,引射器的气体进口与风机通过空气管路连接,引射器的引射气体接口通过引射管路连接至空气预热器热侧出口的尾气排出管,采用本发明的发电系统可降低风机寄生功耗,提高系统的净效率,同时降低了空气预热器的设计难度和成本。
Resumen de: CN120720140A
本发明提出了一种能量梯级利用的氨燃料电池发电的双燃料超燃冲压发动机,属于飞行器热防护与发电技术领域,解决高超声速飞行由于来流马赫数高难以使用传统机载发电系统,以及燃料分解气涡轮的再生冷却通道中的结焦问题。本发明氨和航煤在超燃冲压发动机燃烧室中产生高温燃气,推动发动机产生推力;燃烧室的高温废热通过再生冷却通道进行回收,加热燃料,并使一部分氨分解,分解气驱动涡轮发电机产生电能。本发明是一种能量梯级利用的发电系统,充分考虑实际使用温度和压力等因素,有效提高能源利用效率,减少能源的浪费,并实现能量的合理适配,从而提高整个系统的发电效率,大大满足高超飞行器上的电能需求。
Resumen de: CN223397794U
本实用新型公开了一种燃料电池用超薄金属波纹板PVD涂层装夹辅具,包括夹具本体,所述夹具本体由单根钢丝折弯制得;所述夹具本体包括吊挂结构、支撑结构和防护结构;所述吊挂结构具有向下弯曲的挂耳,所述支撑结构具有向上弯曲的支撑部,所述挂耳和支撑部错位设置,所述吊挂结构和支撑结构构成主体,所述防护结构在竖直方向上位于挂耳和支撑部之间,所述防护结构位于支撑部的上方,所述防护结构与主体形成闭环。本燃料电池用超薄金属波纹板PVD涂层装夹辅具具有制造简单,成本低,能够减少金属双极板变形的优点。
Resumen de: WO2024168344A1
A method of making a tetra-coordinated boronic acid-functionalized polymer molecule includes reacting a pendant boronic acid group of a boronic acid-functionalized polymer molecule with a fluoride reagent and/or a compound having the general formula HX, wherein HX is a Brønsted-Lowry acid. The tetra-coordinated boronic acid-functionalized polymer molecule includes a main chain and a tetra-coordinated boronic acid group linked to the main chain. The tetra-coordinated boronic acid group has the general formula —BFmXn(OH)(3-m-n) where B has four covalent bonds and is covalently bonded to a polymer main chain, side chain, or side group; m and n are each independently 0, 1, 2, or 3; the sum of m+n is 1, 2, or 3; and X is an anion other than fluoride.
Resumen de: US2025300203A1
The system may comprise a fuel cell stack, a hydrogen supply line configured to be coupled to an anode side of the fuel cell stack and supply hydrogen to the fuel cell stack, a hydrogen supply valve, associated with the hydrogen supply line, configured to adjust an amount of hydrogen supplied to the fuel cell stack, and a controller configured to determine, based on a pressure boost request to boost a hydrogen supply pressure, a front-end hydrogen pressure at a front end of the hydrogen supply valve, determine, based on the determined front-end hydrogen pressure, an opening command value of the hydrogen supply valve, and control, based on the determined opening command value, an opening degree of the hydrogen supply valve to boost the hydrogen supply pressure.
Resumen de: WO2025198439A1
The present invention relates to a humidifier for a fuel cell with easy cartridge replacement. The humidifier for a fuel cell comprises: a mid-case including an exhaust gas inlet through which exhaust gas discharged from a fuel cell stack is introduced and an exhaust gas outlet for discharging the exhaust gas; and a cartridge disposed inside the mid-case and comprising an inner case and a humidification membrane disposed inside the inner case. The mid-case comprises a first mid-case having a space into which the cartridge is inserted, and a second mid-case coupled to the first mid-case so as to be opened and closed with respect to the first mid-case.
Resumen de: KR20250142687A
본 발명은 표면에 변성 폴리페닐렌옥사이드 수지 코팅층이 형성된 무기 섬유재; 및 상기 변성 폴리페닐렌옥사이드 수지 코팅층 상에 형성된 열가소성 수지층;을 포함하는 섬유 복합체, 이의 제조방법, 및 이를 이용한 전지에 관한 것이다.
Resumen de: US2025304812A1
A method for producing an electrode ink includes a deaerating step of removing a soluble gas that is more soluble in alcohol than nitrogen from each of first feedstock containing a conductive particle, second feedstock containing a polymer material, and a solvent containing water and a water-soluble organic solvent, and a kneading step of mixing the first feedstock from which the soluble gas has been removed, the second feedstock, and the solvent, wherein the kneading step is performed in an atmosphere of a low-solubility gas that is less soluble in alcohol than nitrogen.
Resumen de: CN120727863A
本发明提供能够以简单的构成抑制滞留水逆流的燃料电池构造。隔膜(3)形成有绕过密封部(8)而将连通孔(4)与流体通路(7)连通的通道部(10)。通道部(10)具有从连通孔(4)朝向流体通路(7)延伸设置的多个通道主体(11)和将多个通道主体(11)的前端部(12)彼此能够流通地连结的连结通路(13)。另外,通道部(10)具有将连结通路(13)与流体通路(7)连通的多个开口部(14)。多个通道主体(11)中的与连结通路(13)的端部(13a)连结的端部通道主体(15)相对于连结通路(13)以锐角连接。并且,连结通路(13)与端部通道主体(15)的连接部(16)弯曲为弧状。
Resumen de: CN120727866A
本发明提供一种燃料电池用电池单元的制造方法,包括以下工序:将设置在框构件(21)的外缘部的被定位部(23a)卡合或嵌合在从工作台(50)的上表面(511)以能够上下移动的方式突出的棒状的定位构件(52),在工作台(50)的上表面(511)的上方配置膜电极结构体(2);由定位构件(52)定位的同时以推动定位构件(52)的方式在定位构件(52)搭载定位用框架(60);在由设置在定位用框架(60)的定位部(65a)对隔板(3)的外缘部进行定位的同时将隔板(3)搭载在膜电极结构体(2);以及对被定位的膜电极结构体(2)和隔板(3)进行焊接。
Resumen de: CN120727867A
本发明提供一种燃料电池堆,具备一对接合隔板(12、12)和膜电极结构体(11),膜电极结构体(11)配置于一对接合隔板(12、12)之间,具有包括电解质膜和电极的膜电极接合体(110)。接合隔板(12)由沿着焊接线焊接的第一金属隔板(12a)和第二金属隔板(12b)构成,第二金属隔板(12b)具有向沿着焊接线形成的第一金属隔板(12a)突出的凸部(120)。
Resumen de: CN120727880A
本发明提供一种燃料电池装置,具备:燃料电池(10);管道单元(2),其包括向燃料电池(10)供给阳极气体的气体供给通道(a1)和供从燃料电池(10)排出的阳极气体流动的气体排出通道(a2);氢传感器(3),其检测阳极气体中包含的氢气;以及气体收集盖(4),其覆盖管道单元(2)的上方,朝向上方形成凹状的贮存空间(400)。气体收集盖(4)具有覆盖贮存空间(400)的周围的侧壁(42)和封闭侧壁(42)的上端部的开口的上壁(41),上壁(41)具有朝向上方形成为凹状的凹部(411),并且在凹部(411)的周围开设将贮存空间(400)和外部空间连通起来的通孔(410a),氢传感器(3)设置在凹部(411)的底部。
Resumen de: CN120727903A
本发明提供一种燃料电池堆,具备:层叠多个发电电池(1)而构成的电池层叠体(10)、包围电池层叠体(10)的壳体(30、40)、面向电池层叠体(10)的外侧面而固定在壳体(30、40)的固定构件(45)。发电电池(1)具有膜电极结构体(2)和隔板(3),膜电极结构体(2)具有膜电极接合体(20)和支承膜电极接合体(20)的缘部的具有挠性的框构件(21)。框构件(21)的缘部(2e)具有比隔板(3)的缘部(3e)向外侧突出的突出部(22),突出部(22)具有向隔板(3)的缘部(3e)弯曲并夹在固定构件(45)与隔板(3)的缘部(3e)之间的弯曲端部(251)。
Resumen de: CN223401636U
本实用新型涉及燃料电池技术领域,公开了用于燃料电池电堆的限位结构,包括底板,所述底板的顶部左侧固定连接有安装座,所述安装座的顶部固定连接有用于为装置提供动力的驱动组件,所述底板的顶部固定连接有挡板,所述挡板的内部前后两侧均固定连接有限位杆,所述限位杆的外部滑动连接有多个隔板,多个所述隔板的底部均固定连接有固定轴一,所述固定轴一的外部转动连接有两个转动板二。本实用新型中,通过液压杆的输出端带动其中一个隔板进行运动,使隔板在运动时通过转动板二和转动环一的配合带动剩余的隔板进行运动,进而能够使隔板对不同尺寸大小燃料电池电堆来调整间距,对其进行限位,继而增加了装置的使用灵活性。
Resumen de: CN223401627U
本公开提供了一种燃料电池密封极板以及燃料电池。该燃料电池密封极板包括燃料电池极板、密封垫和胶粘限位体。燃料电池极板上设置有密封槽和第一限位沟槽,第一限位沟槽设置于密封槽之下且连通于密封槽。密封垫设置于密封槽中,密封垫靠近密封槽的槽底壁的表面上设置有与第一限位沟槽对位的第二限位沟槽,胶粘限位体填充于第一限位沟槽和第二限位沟槽中。通过胶粘限位体的粘接和限位作用,即使在较高压力的气体环境中运行时,密封垫也不易产生侧向移位,密封可靠性较好。密封垫与密封槽之间也难以分离,具有较好的密封耐久性。
Resumen de: CN223401624U
本实用新型涉及电池电堆技术领域,本实用新型要解决的技术问题是密封效果差。为了解决上述技术问题,本实用新型提供了一种金属半电池以及其组装工装。本实用新型包括:双极板包括相互连接的阳极板和阴极板;阳极板中远离阴极板的一侧设有阳极密封槽;阴极板中远离阳极板的一侧设有阴极密封槽;UV胶层填充在阳极密封槽中;膜电极通过UV胶层与阳极板粘接;膜电极靠近阳极板的一侧中,与阳极密封槽对应的位置处设有向阳极板凸出的密封凸起,密封凸起的宽度小于阳极密封槽的宽度;密封件,设于阴极密封槽中;密封件中远离阳极板的一侧的表面向外凸出形成密封球头,多个密封球头间隔设置,密封球头与密封凸起的位置对应。本实用新型密封效果好。
Resumen de: CN223401629U
本申请涉及钒液流电池技术领域,尤其涉及一种大型全钒液流储能电站SOC均衡恢复控制系统,其包括至少两个液流电池模块、储能变流器和电池管理系统;液流电池模块包括电堆组、正极电解液储罐、负极电解液储罐、变频泵和并联在电堆组两端的SOC传感器。工作时,通过电池管理系统BMS控制系统,实时评估各个电池模块的SOC;当BMS系统监测到电堆组之间的SOC差值过大时,一般是为5%。BMS系统通过控制电堆组的变频泵的频率,调节流经电堆组的电解液的流量,从而调整电堆组的内阻,调节在各个电堆组上的充放电功率。
Resumen de: CN120727902A
本发明提供一种燃料电池堆,具备:将发电电池层叠而构成的电池层叠体(10)、从壳体(30)的内壁向电池层叠体(10)突出的引导部(50)、与引导部(50)对应地设置在发电电池的缘部并相对于壳体(30)定位发电电池的定位部。定位部具有分别从与壳体(30)的内壁相向的发电电池的第一缘部(101)和第二缘部(102)向内壁突出设置的第一凸部(331、351)和第二凸部(332、352),引导部(50)包括设置在第一凸部(331、351)的第一方向和第二方向中任一方侧的第一引导部和设置在第二凸部(332、352)的第一方向和第二方向中的任一另一方侧的第二引导部。
Resumen de: CN120727896A
本发明的缓冲部件不会由于缓冲部件与层叠单电池的侧面接触而破损并将缓冲部件高精度地设置于电池组壳体。燃料电池组(100)的冲击承受构造包括:层叠单电池(1),其由多个发电单电池(10)层叠构成;电池组壳体(30),收容层叠单电池(1);以及缓冲部件(120),其配置于电池组壳体(30)的内壁角部(37),缓冲部件(120)具有:树脂部件(121),其与内壁角部(37)相对配置;以及弹性部件(122),其配置在该树脂部件(121)与电池组壳体(30)的内壁面(38)之间,弹性部件(122)嵌入到设置于电池组壳体(30)的内壁面(38)的槽部(39)中并保持。
Resumen de: CN120727901A
本发明提供一种燃料电池堆,具备:电池层叠体(101);一对端部单元(102),其配置于电池层叠体(101)的两端部;冷却介质排出流道(PA2),其在规定方向上贯穿电池层叠体(101)而设置,以排出导入到多个发电电池(1)的冷却介质;以及大致圆筒形状的管体(7),其配置于冷却介质排出流道(PA2),分别在一端部和下端部设置有分别与冷却介质排出流道(PA2)的上游侧和下游侧连通的开口。在端部单元(102)开设与管体(7)的下游侧的开口连通并贯穿端部单元(102)的通孔(102g),端部单元(102)具有支承管体(7)的第一端部的周缘部和第二端部的周缘部的第一支承部(201)和第二支承部(202),第二支承部(202)在通孔(102g)的周面具有形成为朝向通孔(102g)的出口成为尖细的锥形部(521)。
Resumen de: CN120727875A
本发明涉及燃料电池系统,其从燃料废气中很好地除去水蒸汽并且实现系统的小型化。燃料电池系统具备:包含燃料电池堆和模块壳体的多个发电模块;包含向多个发电模块供给燃料气体的多个燃料供给管路的多个燃料供给系统;包含在使从多个发电模块排出的燃料废气在各个热交换器中通过之后,向对应的燃料供给管路回流的多个回流管路的多个循环系统;存积在多个循环系统中通过由对应的热交换器冷凝燃料废气所含的水蒸汽而得到的冷凝水的多个冷凝水箱;以及支承多个发电模块、多个燃料供给系统以及多个冷凝水箱的框架。多个冷凝水箱设置于划分在框架中的比多个发电模块的设置位置靠下方的空间内。
Resumen de: CN120727871A
本发明涉及燃料电池系统,其提高系统的发电效率。燃料电池系统具备:包含燃料电池堆、使被从燃烧气体入口导入的可燃气体燃烧的燃烧部以及收纳它们的模块壳体的发电模块;燃料供给系统;以及循环系统。燃料供给系统包含燃料供给管路、以及燃料鼓风机。循环系统包含:与发电模块的燃料废气出口连接的燃料废气管路、设置在燃料废气管路的热交换器、从燃料废气管路的热交换器的下游侧分支并与燃烧气体入口连接的燃烧气体管路、从燃料废气管路的热交换器的下游侧分支并与燃料供给管路连接的回流管路、以及通过调整回流管路的压力而将通过热交换器之后的燃料废气以规定的分配比向燃烧气体管路和回流管路分配的调压阀。
Resumen de: CN223401628U
本实用新型涉及燃料电池技术领域,且公开了一种燃料电池气体增湿系统。本实用新型的燃料电池气体增湿系统,包括:内筒和外筒,外筒套于内筒外,内筒一端设有第一底面,内筒筒壁中间设有第二底面,第一底面设有供水管路以及出气管路,第二底面设有进气管路,进气管路贯穿内筒的第一底面以及外筒顶部与外接气源管路连通,第二底面还设有气体分布器,气体分布器与第二底面连通,内筒充填有填料层,填料层充填于第二底面之上,外筒底部装有水,水的液面高于所述内筒的筒壁。本实用新型提高水和气之间传质传热效率,以确保气体的增湿效果,从而确保质子膜处于合适的水合状态,保持较高的电导性能,使燃料电池稳定高效工作。
Resumen de: CN223401634U
本实用新型公开了一种电池电堆组装用定位工装,包括:底板;定位组件,定位组件的下端固定设置于底板上,定位组件的内侧形成有一容置空间,容置空间用于容置电池电堆;滑动组件,滑动组件可沿高度方向滑动地设置于定位组件上,滑动组件与电池电堆的外缘滑动接触;锁定组件,锁定组件设置于定位组件上,锁定组件用于锁定滑动组件的位置。通过对本实用新型的应用,提供了一种用于将电缆与外部管段进行位置锁定的固定装置,尤其适用于海上电缆与J形管段的配合安装,尽可能降低了电缆的脱落风险,牢固可靠;且本实用新型有利于后期的维修,降低维修施工成本,减少了施工过程的安全风险。
Resumen de: CN223397549U
本实用新型提供了一种基于生态技术的焚烧厂垃圾渗沥液处理系统,属于处理垃圾渗滤液及其资源化利用的技术领域,包括供水系统、渗滤池系统和人工湿地系统与微生物燃料电池系统耦合成的CW‑MFC系统,且供水系统、渗滤池系统和CW‑MFC系统之间设置有水管,每个所述水管上均设置有蠕动泵,通过本发明,实现了构建一套将渗滤池系统和人工湿地微生物燃料电池系统结合的垃圾渗沥液处理系统,利用渗滤池内高比表面积的填料和定殖在基质上的微生物,将高浓度的污染物降解并去除大量的悬浮物,使其出水再进入人工湿地微生物燃料电池系统,来将剩余难降解污染物的净化处理,充分发挥了各系统对不同污染物的分级降解和充分利用,达到以电能的方式对能源物质的回收。
Resumen de: CN223401633U
本实用新型公开了便于快速定位的液流电池组装线用电堆螺杆安装机构,包括操作机壳,操作机壳的一侧设有电气箱,操作机壳与电气箱之间设有输送线,输送线一侧的一端设有安装机构,输送线另一侧的一端安装有取放机构,安装架两侧的底端分别与两个定位台的一侧固定连接,本实用新型便于快速定位的液流电池组装线用电堆螺杆安装机构,通过设置取放机构和安装机构,夹持件通过两个夹持板从电堆螺杆的两侧进行夹持固定,而后通过转盘转移方向放置安装机构上,安装机构上第一凹槽和第二凹槽相互配合对电堆螺杆进行有序分开堆叠安装,避免出现电堆螺杆与电堆螺杆相互摩擦出现损伤,保证了后续电堆螺杆的使用。
Resumen de: CN120727868A
本发明属于氢燃料电池技术领域,具体涉及一种氢燃料电池的保温装置,集成了热管理模块、高效的隔热层和温控装置,热管理模块通过循环管路与燃料电池堆体紧密相连,能迅速吸收并传导多余热量,实现高效热管理;隔热层包覆在燃料电池堆体外部,采用先进的保温材料,有效阻止了热量向外部环境的散失;而温控装置则实现了与热管理模块及燃料电池堆体的化联动,能够根据燃料电池堆体的实际温度实时调节热管理模块的工作状态,确保燃料电池堆体始终保持在最佳工作温度范围内,此装置不仅提高了能源利用效率,延长了燃料电池寿命,还为氢燃料电池在各种复杂工况下的稳定运行提供了有力保障。
Resumen de: CN120727881A
本发明实施例公开了一种燃料电池的故障检测方法、装置、设备、存储介质及程序产品。包括:获取待检测燃料电池的工作参数;其中,所述工作参数包括内部参数及外部参数,将所述至少一个关键特征输入第一故障检测神经网络,输出所述燃料电池的故障检测结果;其中,所述故障检测结果包括故障类型及故障程度。本发明实施例提供的燃料电池的故障检测方法,通过对包含内部参数和外部参数的工作参数进行预设统计学处理,以获得关键特征,并基于关键特征和第一故障检测神经网络确定燃料电池的故障检测结果,不仅可以降低神经网络模型的数据处理量,且可以提高燃料电池故障检测的准确性。
Resumen de: CN120727843A
本发明公开了一种基于陶瓷3D打印的扁管式SOFC梯度阳极及其制备方法,涉及燃料电池制造技术领域。所述方法包括按照质量比计称取原料,制备SOFC阳极浆料;将SOFC阳极浆料加载至DLP打印机的液槽中,导入梯度模型并通过分层控制曝光参数进行打印,得到阳极生坯;将阳极生坯经酒精清洗后,进行梯度烧结,即得基于陶瓷3D打印的扁管式SOFC梯度阳极。本发明通过一体化成型和梯度烧结,获得兼具高传质效率、机械强度、电化学性能的梯度阳极,解决了传统工艺中层间结合力不足和烧结变形问题。
Resumen de: CN120727837A
本申请公开了一种高温固体氧化物燃料电池电堆电解质阳极涂层及其制备方法,涉及固体氧化物燃料电池技术领域。一种高温固体氧化物燃料电池电堆电解质阳极涂层,按重量份计,所述阳极涂层的原料包括:氧化镍50份‑60份、掺钆氧化锆30份‑40份、三氧化二铁5份‑8份和粘结剂2份‑5份。本申请的阳极涂层导电率优异,且1000小时运行后衰减率仅2.5%,热稳定性高,热膨胀系数与YSZ电解质接近,热膨胀高度匹配,兼具高导电率、优异的抗氧化性和长期稳定性,并优化了热膨胀匹配性,从而解决了传统Ni‑YSZ涂层热膨胀失配、抗氧化性不足以及长期稳定性差的问题。
Resumen de: CN223401635U
本实用新型公开了一种液流电池电堆组装结构,包括:第一端板、第二端板、单电池组、固定柱以及介质循环组件;第一端板开设有若干定位孔,第一端板一侧连接有控温组件,第二端板一侧连接有进液管以及出液管;若干单电池组均位于第一端板以及第二端板之间;若干固定柱贯穿于第一端板、第二端板以及若干电池组,固定柱一端连接有固定螺母;介质循环组件连接于单电池组两侧,介质循环组件与控温组件相连接。通过通过第一端板以及第二端板作为两端的紧固件,将若干组电池组连接于第一端板以及第二端板之间,介质循环组件能够将用于控制温度的液体介质进行循环,随后通过控温组件对电堆内进行控温,减轻电堆的重量。
Resumen de: CN223401625U
本实用新型涉及石墨双极板技术领域,且公开了一种氢燃料电池石墨双极板加工设备,包括外壳,所述外壳的内壁固定装配有限位壳,所述限位壳的内壁开设有移动槽,所述限位壳的内壁固定装配有电动推杆一,所述电动推杆一的伸缩端固定装配有移动块,所述移动块的两侧皆固定装配有限位块,所述移动块的底部固定装配连接杆。通过控制器发出信号,使电机接收到信号后的动力输出轴进行转动,通过电机带动齿轮进行转动,且齿轮与齿条啮合传动,使齿轮在转动时会带动齿条和限位杆在放置块的内壁移动,通过放置块在移动时会带动夹持板对石墨双极板本体的四周夹持,从而实现对石墨双极板本体进行固定,避免在放置时出现掉落的情况。
Resumen de: CN223401626U
本实用新型涉及锌基液流电池,包括依次叠合的正极集流体、隔膜、负极集流体,所述正极集流体与隔膜之间留有空隙,所述隔膜与负极集流体之间留有空隙,使所述隔膜的正负极侧均为空腔结构,即正极空腔和负极空腔。在保证电池面容量及搁置性能的同时,降低电池极间距,进一步提升电池性能。
Resumen de: CN223401623U
本实用新型涉及一种氢燃料电池的双极板及氢燃料电池,包括基板,其上设置有歧管区、过桥区、分配区以及活化区;所述活化区用于所述气体的催化和反应;所述活化区包括流道单元,所述流道单元包括多个沿第一方向延伸设置的气体流道,每个气体流道包括沿第一方向依次设置的平直区域、弯折区域、第一变径区域以及第二变径区域,第一方向与基板的长度方向同向,相邻的两个气体流道的平直区域相互平行,相邻的两个气体流道的弯折区域的弯折方向相互平行。本实用新型的双极板能提升电堆的性能,对于相同片数的电堆,采用变径流道的电堆功率更高。并且本实用新型的双极板能够降低面内发电偏差,使得电化学反应更均匀,电堆一致性更好,从而有效提高使用寿命。
Resumen de: US2025092537A1
In this disclosure, a process of recycling acid, base and the salt reagents required in the Li recovery process is introduced. A membrane electrolysis cell which incorporates an oxygen depolarized cathode is implemented to generate the required chemicals onsite. The system can utilize a portion of the salar brine or other lithium-containing brine or solid waste to generate hydrochloric or sulfuric acid, sodium hydroxide and carbonate salts. Simultaneous generation of acid and base allows for taking advantage of both chemicals during the conventional Li recovery from brines and mineral rocks. The desalinated water can also be used for the washing steps on the recovery process or returned into the evaporation ponds. The method also can be used for the direct conversion of lithium salts to the high value LiOH product. The method does not produce any solid effluent which makes it easy-to-adopt for use in existing industrial Li recovery plants.
Resumen de: CN120727861A
本发明提供一种燃料电池用隔板的制造方法,包括:对具有第一表面(3Rb)和第二表面(3Ra)的金属制的隔板基材(3a)进行冲压加工而形成凹凸状,以使在第一表面(3Ra)形成供反应气体流动的气体流道(PAa),在第二表面(3Ra)形成供冷却介质的冷却流道(PAw)的冲压工序;以增大第二表面(3Ra)的表面粗糙度的方式对第二表面(3Ra)进行粗化加工的粗化工序;以及在第一表面(3Rb)和粗化工序后的第二表面(3Ra)形成具有耐腐蚀性的皮膜的成膜工序。
Resumen de: CN120727873A
本发明涉及再生型燃料电池系统及其运转方法。再生型燃料电池系统(10)具有水电解装置(12)、氢升压装置(18)以及燃料电池(22),在所述再生型燃料电池系统中,在从所述水电解装置(12)向所述燃料电池(22)供给氧气的氧供给路(43)与真空空间之间、以及从所述氢升压装置(18)向所述燃料电池(22)供给氢气的第二氢供给路(44)、在所述氢升压装置(18)中没有参与升压的氢气流动的氢排出路(35)以及从所述水电解装置(12)向所述氢升压装置(18)供给的氢气流动的第一氢供给路(32)与所述真空空间之间具备外部开放阀(81~84)。
Resumen de: CN120727864A
本发明提供在制造膜电极构造体时能够同时进行电解质膜的短路检查以能够实现制造时间缩短和成本降低的层叠构造体的制造装置及制造方法。包括相对配置的一对压接部件(21)和在作为一对压接部件(21)中至少一个的常温压接部件(22)中的面向作为另一个加热压接部件(23)的部位具有柔软性和导电性的缓冲件(24),还包括:压接机构(20A),其将层叠的多个片状部件夹持在常温压接部件(22)加热压接部件(23)之间并按压以进行压接,构成为膜电极构造体(10);以及短路检查电路(30),其在将多个片状部件压接为一体而构成为膜电极构造体(10)的工序中检测膜电极构造体(10)内有无短路部位。
Resumen de: CN120727895A
本发明抑制层叠单电池与缓冲部件接触并将层叠单电池配置在电池组壳体内。燃料电池堆(100)包括层叠单电池(1)、电池组壳体(30)和末端单元(20)。燃料电池堆(100)在电池组壳体(30)与层叠单电池(1)之间还具备层叠单电池(1)的碰撞承受用的缓冲部件(40),缓冲部件(40)在插入于电池组壳体(30)的前端设有与设置于末端单元的紧固孔(24)进行上下方向定位的第1层差部(41),末端单元(20)在与缓冲部件(40)抵接的位置设有进行该缓冲部件(40)的左右方向定位的第2层差部(25),第1层差部(41)与第2层差部(25)嵌合,紧固孔(24)由紧固部件(50)紧固,进行末端单元(20)和缓冲部件(40)的定位。
Resumen de: CN120727907A
本发明的课题为,能够通过简单构造使发电效率提高。单位电池(4)具有设于膜电极构造体(5)与隔膜(6)之间的流体通路(20)、和将连通孔(7)与流体通路(20)连接的连接路(13)。流体歧管(10)使开口形成于各单位电池(4)的连通孔(7)连通并在层叠电池堆栈(2)的单位电池(4)的层叠方向上延伸,向各个单位电池(4)供给流体(H)。流体歧管(10)具有在与堆栈外壳(3)的外部连通的一端(10a)设有使流体(H)流入的入口(11a)的入口部(11)、和位于与入口部(11)为相反侧的另一端(10b)的封闭部(12)。并且,入口部(11)设有使流入流体歧管(10)的流体(H)向连接路(13)侧偏斜的偏斜部(9)。
Resumen de: CN120727898A
本申请提供燃料电池电堆及其组装方法、燃料电池。燃料电池电堆包括:沿第一方向(X)堆叠在一起的多个堆叠层;以及紧固单元(12)。紧固单元(12)包括至少一个紧固杆(14)、支撑板(15)以及缓冲板(16),紧固杆(14)形成为长条状并且沿第一方向(X)延伸,支撑板(15)和缓冲板(16)具有绝缘性并且形成为板状,紧固杆(14)包括主体部(141)和两个端部,两个端部分别固定于在第一方向上最靠外侧的两个堆叠层,以从第一方向(X)上的两侧对多个堆叠层进行夹持,支撑板(15)和缓冲板(16)位于紧固杆(14)的主体部(141)与堆叠层之间。
Resumen de: CN120727877A
本申请公开了一种燃料电池系统控制方法、装置、设备及介质,应用于燃料电池技术领域,包括确定燃料电池系统处于紧急停机状态时,控制氢气喷射比例阀关闭,控制排气排水阀开启以使阳极系统开始泄压;在阳极系统泄压过程中,基于阳极系统的当前氢气压力确定阴极系统的目标空气压力,基于目标空气压力控制背压阀开度以使实际空气压力满足目标空气压力,以及基于尾排处的当前氢气流量确定目标空气流量,基于目标空气流量控制空气压缩机转速以使实际空气流量满足目标空气流量,从而实现了基于氢气压力和流量变化对空气压力和流量的动态调节,避免了燃料电池系统紧急停机过程中由于氢空腔压差超标导致质子交换膜损伤继而造成电堆损坏或寿命衰减问题。
Resumen de: CN120718072A
本发明提供一系列具有氧化还原活性的新型金属基络合物,所述新型铁基络合物的结构式如下式所示:其中,为取代或未取代的5‑12元的含氮杂芳环、取代或未取代的5‑12元的含氧杂芳环、取代或未取代的5‑12元的含硫杂芳环、碳卡宾结构;M1选自下组:Fe(II)、Fe(III);x、y选自下组:0‑20;新型铁基络合物为电中性。本发明还研究这些新型金属基络合物在水系液流电池等电化学储能系统中的应用。
Resumen de: CN120727869A
本发明属于汽车加热保温技术领域,具体涉及一种氢燃料电池的冷却水路的加热保温装置及方法,通过设置节温阀、小循环水路、加热器组件以及精确的温度传感器及电子控制组件,旨在实现在各种工况下对冷却液进行智能化、精细化的温度管理,尤其是在低温停车阶段,通过水泵持续以最小功率模式运行,并结合能量管理组件合理调配车载电池或其他储能设备的能量供给,确保冷却水路内的液体保持流动并得到适度加热,防止结冰现象的发生,同时优化了整个系统的能效比和环境适应性。采用了节能的加热保温方式,通过精确的加热控制手段和成本较低的设备实现对燃料电池汽车各个部件的加热保温,从而提高了燃料电池汽车的能效和性能。
Resumen de: CN120727878A
本发明提供了一种燃料电池系统及其开机控制方法和装置,本发明的燃料电池系统开机控制方法包括接收到系统开机指令时,获取电堆中阴极侧的压力;将获取的所述阴极侧的压力与预设压力范围进行比较;在获取的所述阴极侧的压力不位于所述预设压力范围时,开启与所述阴极侧连接的空气排气管路上的排气控制阀;在获取的所述阴极侧的压力位于所述预设压力范围时,关闭所述排气控制阀;在关闭所述排气控制阀后,控制燃料电池系统按照预设的开机流程启动。本发明的燃料电池系统开机控制方法,有助于减少燃料电池系统开机时的故障率,也有助于提升燃料电池系统的寿命,而具有很好的实用性。
Resumen de: CN120727887A
本公开涉及燃料电池膜电极以及具有该膜电极的燃料电池系统和用电设备。该燃料电池膜电极包括质子交换膜、被设置在质子交换膜的阴极侧的阴极催化剂层。该燃料电池膜电极还包括阴极气体扩散层,被设置在阴极催化剂层的外侧,阴极气体扩散层的外侧表面具有与双极板接触的第一区域和未与双极板接触的第二区域。此外,该燃料电池膜电极还包括疏水层,被设置在阴极气体扩散层的外侧,其中疏水层具有疏水特性,并且疏水层覆盖第二区域中的至少一部分区域。这种方式能够保留膜电极中的水分,提高燃料电池的性能和使用寿命,还能够节省成本。
Resumen de: CN120727872A
本申请提出了一种用于燃料电池系统的加湿装置,其包括:管构件,其被配置成用于连接在用于向电堆供给空气的阴极供气管线上,并且包括限定用于空气的流动通道的管壁和延伸穿过管壁的孔口;以及超声雾化器,其被设置在管构件的孔口处,并且被配置成用于在被启动时通过将来自管构件的外部的水雾化来将水经由孔口引入流动通道中。本申请还提出了包括前述加湿装置的燃料电池系统。根据本申请的加湿装置使得能精确控制进入阴极的空气相对湿度,以将燃料电池系统的电堆中的含水量精确地维持在期望的水平,从而确保燃料电池系统可靠和高效运行。
Resumen de: CN120715214A
本发明属于SOFC电堆技术领域,具体地说涉及一种SOFC电堆用导电陶瓷连接体及其制备方法,制备方法包括以下步骤:将碳化锆粉体、金属及金属氧化物粉体混合,得到混合粉体;将所述混合粉体填充进成型模具中,对成型模具进行烧结处理,成型后得到导电陶瓷连接体。
Resumen de: CN120727906A
本发明公开了一种氢能燃料电池电堆固定结构,包括电池箱和电堆,电堆位于电池箱内,包括若干并列布置的单电池,电堆两端极板的外侧为端板,端板外侧为缓冲挡板,缓冲挡固接有若干记忆金属弹片,记忆金属弹片波浪形结构并与端板抵接,缓冲挡板通过固定组件连接将电堆压紧,缓冲挡板通过补偿结构与电池箱的内壁连接,补偿结构包括弹簧和固定支杆,固定支杆与缓冲挡板滑配,其滑动时拉伸或压缩弹簧,电堆设压力传感器,记忆金属弹片设加热器,压力传感器检测电堆中的压紧力并通过控制器控制加热器加热使记忆金属弹片随压紧力变化而变形。本发明还公开了氢能燃料电池电堆固定结构的工作方式,本发明能够确保压紧力在合理范围,降低外部振动激励。
Resumen de: CN120722193A
本申请涉及一种燃料电池结构参数的确定方法、装置、设备、存储介质和产品。所述方法包括:根据燃料电池的设计需求信息,确定燃料电池中双极板的目标脊背宽度;根据目标脊背宽度和燃料电池的输出性能,从多个扩散层厚度中确定燃料电池的目标扩散层厚度;根据双极板的目标脊背宽度和目标扩散层厚度,确定燃料电池的结构参数。采用本方法能够可以在既保证双极板的脊背宽度,又保证扩散层的厚度的条件下,使得燃料电池的整体传质能力最优,从而提升目标工况下的输出性能。
Resumen de: CN120717942A
本发明公开了一种磺化/羧酸化四酚单体、聚合物、交换膜、制备及应用,以四酚原料、含磺酸基团/羧酸基团的化合物、有机溶剂为原料,通过生成内酰胺反应制备磺化/羧酸化四酚单体;以磺化/羧酸化四酚单体、多氟单体、有机溶剂及催化剂为原料,通过亲核取代共聚制备磺化/羧酸化自具微孔聚合物;以磺化/羧酸化自具微孔聚合物为原料制备自具微孔聚合物阳离子交换膜。本发明提供的自具微孔聚合物阳离子交换膜具有广阔的用途,尤其是,在离子筛分以及液流电池领域可以作为隔膜来使用。
Resumen de: CN120727886A
本发明涉及固体燃料电池技术领域,公开了固体燃料电池尾气热能梯级回用系统,该系统包含:尾气组分分析、热交换拓扑构建、相变蓄热控制、余压发电适配、梯级调度决策及回用效能监控模块。尾气组分分析模块通过质谱检测生成组分浓度分布图谱;热交换拓扑构建模块据图谱建立多级换热器网络并优化参数;相变蓄热控制模块部署相变材料阵列、划分温控区域并生成蓄热数据;余压发电适配模块采集压力信号拟合涡轮机特性以生成发电参数;梯级调度决策模块通过动态规划算法构建模型并生成调度指令;回用效能监控模块实时追踪状态并校正参数。系统实现尾气热能、压力能及可燃组分梯级回收,提升能效与稳定性,适用于固体燃料电池尾气处理。
Resumen de: CN120727845A
本发明涉及电池加工技术技术领域,公开了全钒液流电池碳毡电极表面负载锆金属原子的改性方法,包括对碳毡进行预处理清洗过程,通过乙醇、氯化锆、氯化铋和氯化锡配置氯化物溶液,以及通过乙醇、抗坏血酸、异抗坏血酸钠、柠檬酸和草酸配置抗坏血酸溶液;将氯化物溶液和抗坏血酸溶液混合并搅拌均匀后得到混合溶液;加热混合溶液后,将预处理后的碳毡浸入上述混合溶液中取出烘干,得到耐腐蚀、高转换效率和结构稳定的碳毡电极;本发明有效阻挡电解液对碳基体的侵蚀,从结构上抑制了碳基体的化学降解,降低HER过电位,提升电池的能量转换效率,以及简化电极改性流程和增强改性层的长期稳定性。
Resumen de: CN120716002A
本发明属于液流电池技术领域,公开了一种复合石墨双极板及其制备方法,利用超声波分散机对树脂粉末、石墨烯、分散剂在水和醇所构成的混合分散溶剂中完成均匀分散,得到树脂‑石墨烯分散液;在造粒机中对流态化膨胀石墨完成树脂‑石墨烯分散液均匀喷淋,经热空气烘干后得到膨胀石墨‑石墨烯‑树脂预聚体;铺粉,预扎压,得到低密度双极板坯料板;真空热模压,骤冷定型,脱模,得到具有特定流道结构的复合石墨双极板成品。通过湿法造粒工艺,实现树脂粉末在导电石墨材料表面均匀分布,有效弥补树脂粉末团聚缺陷,协同均匀性引入导电石墨烯以填补石墨材料堆积间隙空白,双极板具备良好力学特性和导电性的同时,有效提升双极板制造良品率和生产效率。
Resumen de: CN120718546A
本发明公开了一种燃料电池用导热型密封材料及其制备方法,通过齐聚体接枝改性与粉体表面化学键合双重改性工艺,协同丙烯酸酯交联网络,解决现有有机硅密封胶强度低、耐腐蚀性差的问题。该密封材料通过改性导热粉体表面的活性基团在固化过程中与密封材料中单体发生化学反应,形成化学键,对固化物原位增强,从而提高密封材料的物理机械性能,导热系数达2.7‑3.1W/(m·K),剪切强度>14MPa,耐水性、耐酸碱腐蚀性均得到显著提升,适用于车载燃料电池等严苛环境。
Resumen de: TW202443144A
This method for manufacturing a thin film device (10) comprises: a step for obtaining a structure (90) by forming, on a substrate (11), a laminate structure formed by laminating a first electrode layer (31), a ceramic layer (50), a second electrode layer (41), a third insulating layer (123), and a heater layer (61) in this order; and a step for removing an unnecessary portion in the structure (90) and forming a bridge structure (20) comprising a stage (21) which supports the laminate structure, and one or a plurality of bridges 22 extending from a peripheral edge of the stage 21.
Resumen de: CN120727885A
一种针对氢燃料电池侦测信息的管控平台与方法,经由解析侦测期间各个工作特征间关联度,同步的依据所取得的工作特征的关联度解析取得工作特征的关键度系数,同步的依据侦测为持续阶段的特点,取得构造单立工作特征的信息点域,且依据所取得的信息点域解析信息失真性系数,且联合工作特征间关联度等系数取得工作信息是失真信息的几率,且依据此对ISODATA方法所取得的信息失真系数执行校准,就极大的改善了运用该方法取得失真侦测值的正确度,同步的能在侦测时,即时找出相应氢燃料电池工作参数的失真性,更深入的解析取得氢燃料电池的工作特征量。且能依据侦测值即时解析,对氢燃料电池执行维护,确保氢燃料电池工作的性能。
Resumen de: CN120727850A
本发明公开了一种声磁双物理场耦合制备有机液流电池电极的方法和有机液流电池,涉及电极和液流电池技术领域。所述方法包括以下步骤:对碳基材料进行纯化处理,将纯化处理后的所述碳基材料浸渍于磁性材料溶液中;向所述磁性材料溶液施加磁场,再向所述磁性材料溶液施加超声场,经声磁双物理场处理后,得到负载磁性材料的碳基材料;取出所述负载磁性材料的碳基材料,清洗、干燥,得到有机液流电池电极。本发明的有益效果是通过磁性材料对碳基材料表面进行修饰,提高了亲水性和导电性,相比于原始碳基材料,本发明的电极对于活性分子的催化性能和电化学性能更好,且能量效率、电压效率以及对电解液利用率都有所提高。
Resumen de: CN120728036A
本发明涉及燃料电池混合供电技术领域,具体为一种燃料电池‑锂电池混合功率动态分配系统及介质,包括燃料电池电堆、锂电池储能模块、三通阀冷却子系统、动态功率补偿模块和中央处理器,利用燃料电池电堆的实时温度场数据,动态控制冷却路径,利用燃料电池废热数据通过热交换器对锂电池储能模块进行选择性预热,并且监测母线电压、负载电流及电池状态,执行基于热约束的功率分配,在预测到过热风险时,将功率请求从燃料电池动态地重新分配给锂电池储能模块,在进行功率分配计算时,将冷却系统的运行模式及对应的寄生能耗作为动态变量进行优化,生成优化功率分配方案。本发明通过智能热管理与动态功率分配,延长电池使用寿命。
Resumen de: CN120727883A
本发明涉及一种岛屿用多功能高效SOFC发电管理方法及系统,涉及发电技术领域,其包括:加热柴油以挥发成柴油蒸汽并采集加热参数信息;根据加热参数信息生成吸入控制信息;基于吸入控制信息控制预设的微界面重整器吸入水蒸气与柴油蒸汽并进行裂解重整以生成混合气体;采集混合气体的温度检测值及混合情况信息;根据温度检测值及混合情况信息生成热送控制信息;基于热送控制信息输送混合气体至预设的SOFC电堆以进行发电。本发明具有减少岛屿发电时产生的空气污染的效果。
Resumen de: CN120719263A
本发明实施例提供一种钛金属双极板的高耐蚀导电复合涂层、制备方法及双极板,所述复合涂层由内至外包括:钛混合底层、梯度过渡的碳氮化钛中间层及非晶碳面层。钛混合底层厚度为0.2μm~0.5μm,由高功率脉冲磁控溅射结合15kV~25kV高压脉冲靶台偏压,通过钛离子注入与沉积形成;碳氮化钛中间层厚度为0.3μm~0.5μm,由高功率脉冲磁控溅射在氮气与乙炔反应气氛中沉积,氮原子含量从靠近钛混合底层向外的方向递减;非晶碳面层,其厚度为0.5μm~1μm,由阳极层离子源辅助高功率脉冲磁控溅射在钛金属双极板表面沉积。本发明技术方案,能够实现金属双极板基体表面多层结构高耐蚀导电复合涂层的制备,满足氢燃料电池钛金属双极板高耐蚀导电需求,提高氢燃料电池性能、寿命及可靠性。
Resumen de: CN120719192A
本申请涉及催化技术领域,公开了高熵合金材料及其制备方法、催化剂及其应用,包括第一金属元素与第二金属元素,所述第一金属元素包括Pt,所述第二金属元素包括Ni、Co、Mg、Bi、Sn中的至少4种,所述高熵合金材料的Pt‑Pt键配位数为0.9‑1.5。由此,有利于本申请提出的高熵合金材料在作为催化剂高效催化MOR反应的同时,具有单原子Pt抗CO中间体中毒的能力,具有较高的催化能力。
Resumen de: CN120727836A
本申请公开了一种高温SOFC电堆阳极涂层及其制备方法,涉及固体氧化物燃料电池技术领域。一种高温SOFC电堆阳极涂层,按质量百分比计,所述阳极涂层的原料包括:氧化镍50%‑60%、钇稳定氧化锆30%‑40%、氧化铈5%‑10%、纳米碳纤维1%‑3%、粘结剂2%‑5%和余量水。本申请的阳极涂层具有高催化活性、优异的耐久性和高度匹配的热膨胀性,且Ni颗粒在阳极涂层中保持良好的分散性,从而解决了传统Ni‑YSZ涂层在高温运行下存在的Ni团聚、碳沉积和热膨胀失配问题。
Resumen de: CN120714642A
本发明公开了一种催化材料、甲烷燃料驱动的固体氧化物燃料电池重整催化层及制备方法与应用,涉及催化剂和电池技术领域。催化材料的化学式为LaCoxNi0.5‑xAl0.5O3,x=0~0.5,采用溶胶‑凝胶法等方法制备得到。本发明还提供一种包括该催化材料的甲烷燃料驱动的固SOFC电池重整催化层,该催化材料负载在SOFC电池阳极侧。并提供了该催化层在SOFC电池的应用。本发明通过将该催化材料应用于SOFC阳极侧,形成催化层,该催化层的存在使得甲烷+二氧化碳燃料可以在SOFC电池内部进行高转化率的重整反应,提升甲烷SOFC的功率输出能力,减少阳极催化剂的碳沉积,增加电池长时间高功率输出的稳定性。
Resumen de: WO2024175356A1
The invention relates to a membrane-electrode arrangement (1) for an electrochemical cell, in particular for a fuel cell or an electrolytic cell, having a membrane (2) which is arranged between two transport layers (3, 4) and, in at least one edge region (5), between two frame parts (6.1, 6.2) of a frame (6), the transport layer (3, 4) and the frame part (6.1, 6.2) at least of one side having a common connection region (7, 8) over which the membrane (2) extends. According to the invention, in at least one connection region (7, 8), preferably in an anode-side connection region (7), the transport layer (3) and the frame part (6.1) each have a flattened, bevelled, rounded and/or arcuate edge geometry (9, 10) on their side facing the membrane (2) in order to form a relief space (11) for the membrane (2). The invention also relates to an electrochemical cell having a membrane-electrode arrangement (1) according to the invention.
Resumen de: WO2024165312A1
The invention relates to a fuel cell system (100) for converting energy. The fuel cell system (100) comprises: - a fuel cell stack (101) and - a computing unit (103). The computing unit (103) is configured so as to switch the fuel cell system (100) to an intermittent operation, wherein in the intermittent operation, the fuel cell system (100) is configured so as to switch repeatedly between a dry operation (211) of the fuel cell stack (101) and a humid operation (207) of the fuel cell stack (101), and, in the dry operation (211), set a degree of humidity in the fuel cell stack (101) which is reduced in comparison to the humid operation (207) and, in the humid operation (211), set a degree of humidity in the fuel cell stack (101) which is increased in comparison to the dry operation (207). The computing unit (103) is configured so as to only activate the intermittent operation when the pressure of an air mass flow supplied to the fuel cell stack (101) lies above a specified pressure threshold.
Resumen de: CN120727862A
本发明提供了一种全钒液流电池及其双极板、单电池与电堆,所述双极板的一侧表面设置有叶脉式流道;所述叶脉式流道包括呈镜像对称的两个单侧通道,每个单侧通道包括入口流道、四条分支流道及出口流道;入口流道出口连通至四条分支流道的入口,四条分支流道的出口连通至出口流道的入口;由远离两个所述单侧通道的对称轴线的方向至靠近对称轴线的方向,四条所述分支流道分别为第一流道、第二流道、第三流道与第四流道;本发明提供的全钒液流电池的双极板,通过设置叶脉式流道,能够显著降低电解液流动的压降损失,实现电解液在电极表面的均匀流量分配,同时具备对动态流量变化的自适应调节能力。
Resumen de: CN120716533A
本申请涉及燃料电池技术领域,特别涉及一种燃料电池电堆的活化方法、装置、车辆及存储介质。该方法包括:基于当前车辆的发动机运行与静置时间加权值,判断出发动机满足预设的健康状态检测条件的情况下,基于燃料电池电堆的当前健康状态,判断燃料电池电堆是否满足预设活化条件;在燃料电池电堆满足预设活化条件的情况下,判断出整车散热能力满足预设的电池SOC状态检测条件时,获取动力电池SOC状态,并基于动力电池SOC状态对燃料电池电堆执行低温活化操作。由此,解决了现有技术的阴极饥饿法由于对控制器的精度有较高的要求,难以精准控制,易对电堆造成不可逆损坏的问题,有效提升电堆性能和寿命。
Resumen de: CN120727876A
本发明涉及燃料电池技术领域,公开了一种燃料电池的排水系统及其控制方法、控制装置及电子设备,其中,系统包括:储水腔体,储水腔体底部设置有排水阀;液位传感器,液位传感器设置在储水腔体内部;排氢阀,排氢阀设置在储水腔体侧壁,排氢阀的设置位置高于液位传感器的设置位置。本发明的排水系统,能够解决燃料电池系统运行过程中的储水状态不明,排水阀开启、关闭时长不定造成的排水时氢气损失的问题,可以实现排水阀长时液封,可以有效降低排水阀开启时间过长导致的氢气浪费的情况,有效降低阳极压力波动次数,使储水腔体内的液位始终处于合理范围内,有效降低材料成本。
Resumen de: CN120727894A
本发明涉及一种高耐久性燃料电池系统及方法,包括电堆系统,电堆系统的燃料进口和燃料出口接入燃料循环系统,电堆系统的空气出口与燃烧器连接,燃烧器通过连接管路与燃气循环管路连接,燃烧器的尾气排出管连接至空气预热器的热侧接口,尾气排出管与通过第一引射管路与第一引射器的引射接口连接,第一引射器的出口连接至空气预热器的冷侧进口,第一引射器的进口通过第一阀门与风机连接,空气预热器的冷侧出口连接至电堆的空气进口,电堆系统的空气出口还通过第二引射管路与第二引射器连接,第二引射器的出口与空气预热器的冷侧进口连接,进口通过第二阀门与风机连接,本发明的系统耐久性好。
Resumen de: CN120717810A
本发明公开了一种等离子体处理的柔性石墨板及其制备方法,涉及质子交换膜燃料电池技术领域。本发明通过激发等离子体处理气体,对模压得到的预制板进行前处理,利用等离子体清理因模压而产生的细小石墨颗粒,同时对柔性石墨板进行表面氧化,生成含氧官能团,提高表面的润湿性,降低水接触角,促进浸渍树脂渗透,从而降低柔性石墨板的气孔率和提升物理强度。
Resumen de: CN120727908A
本发明涉及燃料电池技术领域,具体是涉及一种模块化装配式氢燃料电池,包括至少两个燃料电池模块,模块包括电池堆、下端板和上端板,电池堆设有流体输入通道与流体输出通道,下端板设有连通流体输入通道的第一流体腔,周侧设下连接槽,嵌装用于连接相邻下端板的下连接条,其上设连通相邻第一流体腔的下流体连通口,上端板设有连通流体输出通道的第二流体腔,周侧设上连接槽,嵌装用于连接相邻上端板的上连接条,其上设连通相邻第二流体腔的上流体连通口,氢气与氧气依次经第一流体腔、流体输入通道、电池堆反应腔、第二流体腔及流体输出通道流动,通过上连接条和下连接条实现模块间稳固连接及工作流体通路的连续性,避免额外复杂管路布置。
Resumen de: WO2024175617A1
The invention relates to a fuel cell device having a first fuel cell unit (14) and at least one further fuel cell unit (16, 18, 20, 22), which can be operated independently of one another, a gas supply unit (24) which has at least one central fuel supply line (26, 32) comprising at least one first gas outlet (28, 34) and a further gas outlet (30, 36) for supplying the fuel cell units (14, 16, 18, 20, 22) with a first gas, in particular fuel (12) and/or hydrogen. According to the invention, the fuel cell device has a first coupling unit (38) for releasably connecting the first fuel cell unit (14) to the first gas outlet (28, 34) of the central fuel supply line (26, 32) and at least one further coupling unit (40, 42, 44, 46) for releasably connecting the at least one further fuel cell unit (16, 18, 20, 22) to the further gas outlet (30, 36) of the at least one central fuel supply line (26), wherein the coupling units (38, 40, 42, 44, 46) each have closing elements (48, 50) for directly closing the gas outlets (28, 30, 34, 36).
Resumen de: CN120724707A
本申请公开一种液流电池堆封装设计方法及液流电池堆,该方法包括:建立液流电池堆模型,液流电池堆模型至少包括:两个极板、设置于相邻的两个极板之间的隔膜、分别设置于两个极板远离隔膜的一侧的正负极电池片、分别设置于正负极电池片远离隔膜的一侧的两个异型永磁体;计算异型永磁体的磁化强度;根据磁化强度分别计算异型永磁体的磁化电流体密度和异型永磁体的表面磁化电流面密度;根据磁化电流体密度和表面磁化电流面密度计算两个异型永磁体之间的初始磁场力;根据预设的条件修正初始磁场力,以使得液流电池堆模型受到的夹紧力达到封装要求。本申请在保证液流电池堆性能的前提下,能够给液流电池堆提供均匀的夹紧力,提高液流电池堆的稳定性。
Resumen de: CN120720286A
本发明公开了一种具有可调节式喷嘴的燃料电池引射器,包括引射器主体,引射器主体具有引射腔,引射器主体的一端具有用于安装喷嘴的喷嘴安装孔,所述喷嘴上设有安装支架,所述引射器主体上设有驱动机构,所述驱动机构驱动所述安装支架沿所述引射器主体的轴向移动从而调节所述喷嘴安装在所述喷嘴安装孔内的深度。本申请燃料电池引射器通过驱动机构驱动整个喷嘴结构沿所述引射器主体的轴向移动从而调节所述喷嘴安装在所述喷嘴安装孔内的深度,以调整喷嘴出口与引射器喉部之间的距离,达到最佳距离值,提高引射器工作范围,保证燃料电池引射器处于最优工作状态。
Resumen de: CN120727884A
本申请涉及能源控制技术领域,特别涉及一种燃料电池阳极压力与排氢协同控制方法、装置、车辆、介质,其中,方法包括:获取当前时刻阳极侧氮气浓度、阳极入口压力、比例阀开度和排氢阀开度;根据当前时刻的阳极入口压力、比例阀开度和排氢阀开度,估计当前时刻的阳极侧排氢流量和预测下一时刻的阳极入口压力;若当前时刻的阳极侧氮气浓度大于第一浓度阈值,则根据当前时刻的阳极侧排氢流量控制排氢阀执行排氢动作,并以当前时刻的阳极侧排氢流量作为前馈信号,根据当前时刻的阳极入口压力和下一时刻的阳极入口压力对比例阀进行比例积分控制。由此,解决了相关技术排氢固定、压力控制依赖传感器,难应对动态工况,易致氢气浪费和压力波动等问题。
Resumen de: CN120727889A
本发明涉及一种高透氧的膜电极及其制备方法,膜电极包括质子交换膜,以及质子交换膜两侧设置的阳极催化层和阴极催化层,阳极催化剂浆料包括质量比为1:(1~10):(10~1000)的阳极催化剂、离聚物和分散溶剂;所述阴极催化剂浆料包括质量比为1:(1~10):(1~10):(10~1000)的阴极催化剂、离聚物、离子液体和分散溶剂。与现有技术相比,本发明针对燃料电池催化层内多孔碳载体的氧气传质困难问题,通过将离子液体与离聚物预先混合再制备浆料进行喷涂制备膜电极的方法,减弱离聚物薄膜在催化剂表面形成的紧密结构,提高离聚物薄膜分布的均匀性,显著降低局域氧气传质阻力,提高燃料电池在大电流密度下的性能。
Resumen de: CN120719527A
本发明公开了一种液流电池用硬质电极及制备方法。本发明将石墨化好的石墨毡或者石墨布裁切成片,然后直接通过CVI工艺沉积无定形碳,使其硬度达到邵氏硬度50‑70度;在连续炉中通入氧化性气体或氧化性气体和氮气的混合气,使其表面接枝亲水官能团和促进电化学活性团能团,使得其硬度保持邵氏硬度≥40度,且具有优异的亲水性。本发明有效解决了现有液流电池电极织物制备工艺需要高压缩来降低接触电阻,高压缩对电极会造成较大破坏,也可能造成质子膜的损伤,同时柔性织物机械稳定性较差,长期使用存在风险和安全隐患的技术问题。
Resumen de: CN120727846A
本发明公开了一种氮/硼掺杂非贵金属基材料及其合成方法和在微生物燃料电池中的应用。所述方法以碳纤维刷为基底,尿素和硼氢化钠分别为氮源和碳源,通过水热法合成氮/硼掺杂非贵金属基材料。本发明利用氧化石墨烯与FeCoNi‑LDH之间的静电作用实现紧密结合,使得FeCoNi‑LDH纳米片均匀分散在碳纤维刷表面,解决LDHs易团聚、导电性能差的问题;硼/氮共掺杂过程,通过调节复合材料的电子结构构建出高效的电子传输通道,赋予材料优异的电子传输能力和氧还原性能。在以氮/硼掺杂非贵金属基材料为阴极构建的MFC测试中,输出电压、最大功率密度是商业Pt/C以及空白碳纤维刷的数倍,在微生物燃料电池领域具有广泛的应用前景。
Resumen de: CN120727879A
本申请涉及燃料电池技术领域,特别涉及一种燃料电池冷启动控制方法、装置、车辆、存储介质和程序产品,其中,方法包括:获取燃料电池的电堆出口温度和环境温度;计算电堆出口温度和环境温度的温度差值;根据温度差值控制燃料电池执行冷启动动作,若在燃料电池执行冷启动动作过程中温度差值大于第一温度阈值,则控制加热器加热冷却水路。由此,解决了相关技术中缺乏对电堆状态的实时调控、冷热冲击剧烈、缓慢不稳定等问题。
Resumen de: WO2025192596A1
Provided is a work vehicle capable of appropriately protecting a tank and a radiator device. A work vehicle (1) comprises: a tank (10) that stores gas; a fuel cell (17) that is mounted on a vehicle body (2); a radiator device (9B) that cools the fuel cell; and a cover (12) that covers the tank and the radiator device.
Resumen de: JP2025139985A
【課題】流体の混合を回避することができるセルユニットを提供する。【解決手段】セルユニット2は、互いに背向する第1面13及び第2面16を規定する基材10と、前記第1面13から前記第2面16まで前記基材10を貫通する孔17と、前記孔17内に配置されて、前記孔17を、前記第1面13側の第1空間20と前記第2面16側の第2空間21とに仕切る膜31と、前記第1面13及び前記第2面16を接続する前記基材の外周面60から、前記膜31の外端31bに対向する前記基材10の内周面61まで連通する連通路62と、を備える。【選択図】図8
Resumen de: WO2025192597A1
Provided is a work vehicle wherein a fuel cell can be efficiently cooled. In a work vehicle (1) provided with a hood (8) and a radiator device (9B), equipment disposed under the hood is cooled by the radiator device, which is disposed outside the hood.
Resumen de: JP2025140684A
【課題】使用された燃料電池スタックの一部のセルを交換する場合、交換された新しいセルの特性と、交換されていない古いセルの特性とが異なることによる燃料電池スタックの性能低下を抑制する交換用セルの製造方法を提供する。【解決手段】交換用セルの製造方法は、使用により劣化が生じた燃料電池スタックの対象セルと交換される交換用セルの製造方法であって、複数のセルのうちの対象セル以外のセルである非対象セルを所定条件の下で発電させた際の生成水量を取得する第1取得ステップと、非対象セルの生成水量に基づいて、交換用セルに塗工すべき触媒塗工量を判定する塗工量判定ステップと、塗工量判定ステップにおいて判定された触媒塗工量に応じた量の触媒が塗工された交換用セルを製造する製造ステップと、を有する。【選択図】図3
Resumen de: JP2025140088A
【課題】燃料電池車両においてエアベアリングへの水の侵入を抑制する技術を提案する。【解決手段】燃料電池車両は、エアベアリングを備えるエアコンプレッサと、前記エアコンプレッサから空気の供給を受ける燃料電池とを有している。また、燃料電池車両は、前記燃料電池から排出された空気を前記燃料電池車両の外部に排出する第1排出流路と、前記エアベアリングから排出された空気を前記燃料電池車両の外部に排出する第2排出流路と、を有している。前記第2排出流路の排出口は、前記第1排出流路の排出口よりも高い位置に配置されている。そのため、燃料電池車両が渡河する場合に、第2排出流路の排出口に水が流入し難い。このため、水が第2排出流路の排出口を介して、エアベアリングへ侵入することを抑制することができる。【選択図】図2
Resumen de: WO2025192158A1
An electrochemical element according to one embodiment of the present invention comprises, in the following order, a glass film capable of transmitting gas, an electrode layer, and an electrolyte layer, wherein the bending radius is greater than 20 mm and equal to or less than 200 mm, and the thickness of the glass film is 20-200 μm inclusive.
Resumen de: JP2025140392A
【課題】燃焼部で失火が生じた場合でも燃料電池の破損を防止できる燃料電池システムを提供する。【解決手段】燃焼熱により改質部2を加熱する燃焼部4と、改質部4から燃料電池3に改質ガスを供給する改質ガス供給部5と、酸化剤ガスを燃料電池3に供給する酸化剤ガス供給部6と、燃焼部4の失火の発生を検出する失火発生検出部18と、燃料電池3における改質ガス入口部12を加熱可能な改質ガス用加熱部19と、燃料電池3における酸化剤ガス入口部13を加熱可能な酸化剤ガス用加熱部20と、改質ガス用加熱部19及び酸化剤ガス用加熱部20の作動を制御する制御部21とを備え、制御部21は、失火発生検出部18が燃焼部4の失火の発生を検出したときに改質ガス用加熱部19及び酸化剤ガス用加熱部20の作動を開始する。【選択図】図1
Resumen de: JP2025139999A
【課題】カソード流路に供給するキャリアガスを再利用可能にする。【解決手段】分離システムは、電解質膜、触媒、アノード流路およびカソード流路を有する電解セルと、アノード供給流路に接続されて水素同位体を含む原料流体を供給する原料流体供給手段と、カソード供給流路に接続されて第六〇流体を供給するカソードガス供給手段と、カソード排出流路に接続されたカソード側凝縮分離器と、カソード側凝縮分離器により分離されて不活性ガスを含んだ第六一流体をカソード供給流路に戻すカソードオフガス循環流路と、カソードオフガス循環流路に設けられたコンプレッサと、カソード供給流路におけるカソードオフガス循環流路との接続部分と電解セルとの間のカソード供給流路に設けられた第1圧力検出手段と、第1圧力検出手段の検出値が第1所定値よりも高い場合には、コンプレッサの回転数を所定回転数よりも高くする制御部と、を備える。【選択図】図1
Resumen de: JP2025141790A
【課題】高温の水蒸気に曝されても電極構造の変化が少ない電極を提供すること。【解決手段】電極は、電解質粒子と、Ni系粒子とを備えている。前記電解質粒子は、GdがドープされたCeO2(GDC)、及び/又は、Gd及びLaがドープされたCeO2(La-GDC)を含む。前記Ni系粒子は、Ni又はNi基合金からなるコアの表面の一部又は全部がNiO又はNiを含む複合酸化物からなるシェルで被覆されたコアシェル粒子からなる。前記GDCは、Gdの含有量が0mol%超20mol%以下であるものが好ましい。前記La-GDCは、Gdの含有量が0mol%超20mol%以下であり、Laの含有量が0mol%超20mol%以下であるものが好ましい。前記Ni系粒子の含有量は、30mass%以上70mass%以下が好ましい。【選択図】図6
Resumen de: JP2025139788A
【課題】急激な温度降下による燃料電池部の劣化を防止しつつ、停止時間の短縮化を実現する燃料電池システムを提供する。【解決手段】燃料電池システムは、アノード及びカソードを有する燃料電池部と、アノードから排出されるアノードオフガス及びカソードから排出されるカソードオフガスを燃焼する燃焼部と、を有するホットモジュールと、燃料電池部の温度を目標温度まで降下させて運転を停止させる運転制御部と、を備え、ホットモジュールは、アノードオフガスを燃焼部へ導く第1アノードオフガス流通路と、第1アノードオフガス流通路を流れるアノードオフガスの流量を調整可能な第1流量調整部と、を更に有し、運転制御部は、運転停止処理において、燃料電池部の温度が降下する速度である実降温速度が目標降温速度となるように、第1流量調整部の動作を制御することにより、燃料電池部から燃焼部へ流れるアノードオフガスの流量を調整する。【選択図】図2
Resumen de: WO2025192387A1
This hydrogen consumption device comprises hydrogen consumption equipment to which a detachable hydrogen tank is connected and which consumes hydrogen in the hydrogen tank. An oxygen concentration reduction mechanism for reducing the concentration of oxygen mixed in hydrogen and supplying said hydrogen to the hydrogen consumption equipment is disposed in hydrogen supply piping between the hydrogen tank and the hydrogen consumption equipment.
Resumen de: WO2025192600A1
This cell unit (2) comprises: a base material (10) that defines a first surface (13) and a second surface (14) that face each other back to back; a hole (15) that penetrates the base material (10) from the first surface (13) to the second surface (14); a film (21) that is disposed in the hole (15) and partitions the hole (15) into a first space (17) on the first surface (13) side and a second space (18) on the second surface (14) side; and an annular outer peripheral member (32) disposed around the outer peripheral surface (11a) of the base material (10).
Resumen de: JP2025140845A
【課題】熱源機の排熱を利用する省エネ性の高い排熱運転を適正なタイミングで行えるようにすることが可能な熱供給システムを提供する。【解決手段】温水の熱を利用可能な熱利用装置Aと、熱利用装置Aに温水を供給する熱源機Bと、が備えられ、熱源機Bに、運転動作により排熱を発生する排熱発生装置1と、発生した排熱を温水として蓄える貯湯タンク2と、運転を制御する制御部4と、各種の情報を入出力可能な入出力部R1と,が備えられ、熱源機Bは、貯湯タンク2に蓄えられている温水を熱利用装置Aに供給する排熱運転を実行可能に構成され、制御部4は、過去の排熱運転についての利用状況を示すデータ、及び、排熱運転と相関の高い外部データとに基づいて、排熱運転が行われるか否かを予測し、排熱運転が行われると予測されると、排熱運転の実行に適した使用条件を入出力部R1にて出力する。【選択図】図1
Resumen de: DE102025109738A1
Die vorliegende Erfindung bezieht sich auf ein sulfoniertes Polyphenyl (phenylen) äther-Randomcopolymer, sein Herstellungsverfahren und seine Anwendung, der chemische allgemeine Formel des sulfonierten Polyphenyl(phenylen)äther-Randomcopolymers ist wie nachfolgend:wobei drei Polyphenylringmonomer X, Y und Z in Randomcopolymerisationsweise verwendet sind, um die Position der Sulfonierung zu konrollieren. Die Segmente X und Y können sulfoniert werden, um hydrophile Segmente mit einer Wiederholungszahl n zu erhalten, während es unmöglich ist, die Substituente R4und R5in den Segmenten Z zu sulfonieren, sodass hydrophobe Segmente mit einer Wiederholungszahl 1-n gebildet werden. Durch die Kontolle des Polymerisationsäquivalenzverhältnisses der Segmente Z in dem Polyphenylringmonomer ist eine Feinjustierung des Verhältnisses von den hydrophilen Segmenten zu den hydrophoben Segmenten erreicht , und dadurch ist weiter die Ionenaustauschkapazität des sulfonierten Copolymers wirkungsvoll kontrolliert. Durch eine genaue Feinjustierung des Verhältnisses von den hydrophilen Segmenten zu den hydrophoben Segmenten kann die Ionenaustauschkapazität der in jedem Batch produzierten Copolymer innerhalb eines Bereich von einem bestimmten Wert kontrolliert werden. Das erfindungsgemäße Copolymer weist eine gute mechanische Eigenschaften, eine optimale Stabilität der Größe des Membrans, eine gute Protonenleitfähigkeit und eine kontrollierbare Ionenaustauschkapazität auf.
Resumen de: JP2025140843A
【課題】より簡単な構成でねじれを確認することができるガスケットを提供する。【解決手段】ガスケット1は、弾性体から形成されて、長手方向軸線xに沿って延びるガスケット本体10を備える。前記ガスケット本体10は、前記長手方向軸線xに対して一方の側に規定される第1表面11と、前記長手方向軸線xに対して一方の側と反対の他方の側に規定される第2表面12と、を有している。前記第1表面11は、前記第2表面12の凹凸と異なる凹凸を有する加工領域14を有する。【選択図】図3
Resumen de: WO2025192602A1
A cell unit (2) comprises: a base material (10) that defines a first surface (11) and a second surface (12) facing each other; a hole (13) that penetrates from the first surface (11) to the second surface (12); a film (21) that is disposed in the hole (13) and partitions the hole (13) into a first space (15) on the first surface (11) side and a second space (16) on the second surface (12) side; a first flow path (40) that is formed on the base material (10) and serves for introducing a first fluid into the first space (15); a second flow path (42) that is formed on the base material (10) and serves for taking out a second fluid from the second space (16); a first gasket (50) disposed on the first surface (11) and surrounding the first space (15) and the first flow path (40); and a second gasket (51) disposed on the first surface (11) and surrounding the second flow path (42) on the outside of the first gasket (50).
Resumen de: JP2025140675A
【課題】燃料電池スタック組み立て後に所望の発電性能を引き出すためのエージング方法を提供する。【解決手段】エージング部38は、燃料電池スタックに対して非発電エージングと性能評価とを行い、プロトン抵抗取得部98は、非発電エージングが行われているときに対象セルの第1プロトン抵抗を取得し、性能評価後に対象セルの第2プロトン抵抗を取得し、対象セルの第1プロトン抵抗と、対象セルの第2プロトン抵抗との差分に応じた値である第3プロトン抵抗を取得する。【選択図】図4
Resumen de: JP2025141021A
【課題】燃料電池およびキャパシタの劣化を抑制できる適切な配分で、燃料電池およびキャパシタから電動機に電力を供給できるようにする。【解決手段】電動機77は、燃料電池51およびキャパシタ61から電力を供給可能に構成される。コントローラ90は、電動機77に供給されている電力と、キャパシタ61の実電圧と、燃料電池51が出力する電力の変動量の制限値と、に基づいて、燃料電池51とキャパシタ61との電力分担量を求める。コントローラ90は、求めた電力分担量に基づいて、燃料電池51が出力する電力を燃料電池コンバータ53に指示し、キャパシタ61の充放電の電力をキャパシタコンバータ63に指示する。【選択図】図1
Resumen de: WO2025192621A1
The present invention provides a work vehicle (1) in which a pipe (63) connected to a tank (62) can be connected to a connection device (64) without requiring complicated operations. The present invention comprises: a tank (62) that stores gas; a pipe (63) that is connected to the tank (62); a connection device (64) that includes a gas filling port (640) and is connectable to the pipe (63); and a support structure (65) that adjustably supports the position of the connection device (64) in a state in which the pipe (63) is not connected to the connection device (64).
Resumen de: JP2025141400A
【課題】大気圧が比較的低い環境で燃料電池モジュールが使用される場合であっても、エアコンプレッサを構成する部品の破損を抑制しつつ、燃料電池スタック内が乾燥状態になることによる燃料電池スタックの劣化を抑制する。【解決手段】エア調圧弁ARVと、圧力検出部Spにより検出される圧力が上限値Pmaxを超えないようにエア調圧弁ARVの動作を制御する制御部Cntとを備えて燃料電池モジュールFCMを構成し、制御部Cntは、燃料電池スタックFCS内が乾燥状態になっていると判断すると、上限値PmaxをエアコンプレッサACPの温度に応じた第1圧力に設定し、燃料電池スタックFCS内が乾燥状態になっていないと判断すると、上限値を第1圧力より低い第2圧力に設定する。【選択図】図1
Resumen de: JP2025141373A
【課題】外部負荷に出力可能な電力の最大値を算出すること。【解決手段】燃料電池システムは、外部負荷と電気的に接続される燃料電池スタックと、燃料電池スタックの発電電力を利用し動作する補機と、制御部と、を備える。制御部は、燃料電池スタックの最大出力電力と制限値とに基づいて燃料電池スタックの電力制限値を算出する。制御部は、燃料電池スタックの電力制限値と補機の損失との相関に基づくマップM1に基づいて燃料電池システムの電力制限値を求める。【選択図】図4
Resumen de: JP2025141371A
【課題】インジェクタよりも下流のガスがインジェクタに逆流することを抑制すること。【解決手段】燃料電池システムは、燃料電池スタックと、燃料電池スタックに水素を供給する供給源と燃料電池スタックとを接続するとともに、供給源から供給された水素が流れる供給路と、供給路に設けられるインジェクタと、供給路のうちインジェクタよりも下流の圧力である下流圧力を検出する下流圧力センサと、インジェクタを制御する制御装置と、を備える。制御装置は、予め定められた条件が成立した場合にインジェクタを閉状態にすることで、供給路のうちインジェクタよりも上流の圧力である上流圧力よりも下流圧力のほうが低い状態を維持する。【選択図】図2
Resumen de: TW202440320A
Provided are a sheet and a sealing material that are based on clay and have excellent water resistance in a high-temperature environment. The sheet includes swellable clay and non-swellable clay. The swellable clay includes a first component and a second component that has a different structure from the first component. The non-swellable clay is one in which the ions of the first component and second component have been exchanged in a dispersion medium and that is non-swellable by heating. The sheet includes the first component, second component, and optionally a third component. The first component is a swellable clay in which Li has been substituted between layers. The second component is Na-montmorillonite or K-montmorillonite. The third component is a filler. In the sheet, when the total weight of the first component, second component, and third component is taken as 100 wt%, the content of the first component is from 25 wt% to 80 wt%, the content of the second component is from 10 wt% to 50 wt%, and the content of the third component is from 0 wt% to 80 wt%.
Resumen de: US2025293267A1
An electrochemical cell is disposed of a fuel electrode layer, a solid electrolyte layer, and an air electrode layer, in this order. The air electrode layer includes a plurality of catalyst particles for an air electrode which is composed of a catalyst material, a plurality of electrolyte particles for the air electrode which is composed of a solid electrolyte material, and at least one pore. The catalyst material has a coefficient of linear thermal expansion at 700° C. within a range of greater than 15x10−6/K and less than 30x10−6/K. When a first total surface area of the catalyst particles is Scat, and a second total surface area of an interface portion where a first surface of the catalyst particles is in contact with a second surface of the electrolyte particles is Scat-ele, the air electrode lay has a value of Scat-ele/Scat of 0.6 or more.
Resumen de: JP2025139905A
【課題】利用者の利便性の低下を抑制することができる燃料電池システムを提供する。【解決手段】燃料電池システム100は、燃料電池セルCから排出されるオフガスを燃料させる燃焼部15と、燃焼部15から排出される燃焼排ガスに含まれる水を凝縮して回収する凝縮回収部51と、凝縮回収部51で回収された水を貯留する水タンク21と、水タンク21に貯留された水の水量を測定する水量測定部23と、制御部10とを備え、制御部10は、水量測定部23によって測定される水量が第1水量閾値以下であるか否かを判定し、水量が第1水量閾値以下であると判定すると、水タンク21が設置される設置地域における将来の気象を示す気象予報データを取得し、気象予報データ及び通常運転モードにおける過去の運転実績のデータに基づいて生成される水収支予測データに基づいて、通常運転モードから水回収運転モードへの運転モードの切り替えの要否を判定する。【選択図】図1
Resumen de: JP2025139975A
【課題】設計の自由度を高めるとともに組立性を向上させることができるセルユニットを提供する。【解決手段】セルユニット2は、互いに背向する第1面11及び第2面12を規定する基材10と、前記第1面11から前記第2面12まで前記基材10を貫通する孔13と、前記孔13内に配置されて、前記孔13を、前記第1面11側の第1空間15と前記第2面12側の第2空間16とに仕切る膜21と、前記膜21に沿って前記第1空間15又は前記第2空間16に配置された導電性部材28,29と、を備える。【選択図】図1
Resumen de: JP2025141207A
【課題】本発明は、可撓性を有し、かつ従来に比べて塑性変形しにくい可撓性ガス拡散電極を提供する。【解決手段】複数の貫通孔をもち、面状に広がりを持った芯材部と、芯材部の周囲を被覆した被覆層を有したガス拡散基材と、ガス拡散基材の第1主面に担持された複数の触媒粒子を有した触媒層を有し、被覆層は、降伏応力が芯材部よりも大きく、かつ、弾性率が芯材部よりも小さい構成とする。【選択図】図1
Resumen de: CN119948087A
An anion exchange membrane obtainable by curing a curable composition comprising: (a) a monomer of formula (I) (a) AR1-(CH2) n-N + (RaRb)-(CH2) n-AR2 wherein: each n independently has a value of 1 or 2; (i) Ra and Rb are each independently an optionally substituted C1-3 alkyl group or an optionally substituted C2-3 alkenyl group; or (ii) Ra and Rb together with the positively charged nitrogen atom to which they are attached form an optionally substituted 5 or 6 membered ring; or (iii) one of Ra and Rb is an optionally substituted C1-3 alkyl group or an optionally substituted C2-3 alkenyl group, and the other of Ra and Rb together with a group of formula AR1-(CH2) n-N + forms an optionally substituted 5 or 6 membered ring; or (iv) Ra together with a group of formula AR1-(CH2) n-N + forms an optionally substituted 5 or 6 membered ring, and Rb together with a group of formula N +-(CH2) n-AR2 forms an optionally substituted 5 or 6 membered ring; x-is an anion; and AR1 and AR2 each independently comprise an aromatic group; wherein: (I) at least one of AR1 and AR2 comprises a curable ethylenically unsaturated group; (II) the monomer (a) of formula (I) comprises at least two curable ethylenically unsaturated groups; and (III) the anion exchange membrane has an ion exchange capacity (IEC) of less than 1.65 meq/g dry membrane.
Resumen de: CN119948093A
A method of recovering a fluorinated polymer from a membrane comprising the fluorinated polymer, the fluorinated polymer comprising a fluorinated polymer backbone and a plurality of groups represented by the formula-SO3Z wherein Z is hydrogen, the method comprising: contacting the membrane with an agent providing a source of cations to form a fluorinated polymer salt wherein Z is a cation, wherein the agent is maintained at a temperature sufficiently low such that the membrane remains in a solid, undispersed form; removing excess unreacted reagent from the solid fluorinated polymer salt; and after removing the excess reagent, dispersing the solid fluorinated polymer salt in a solvent.
Resumen de: CN119968423A
An anion exchange membrane obtainable by curing a curable composition comprising: (a) a monomer of formula (I) (a) AR1-(CH2) n-N + (RaRb)-(CH2) n-AR2 wherein: each n independently has a value of 1 or 2; (i) Ra and Rb are each independently an optionally substituted C1-3 alkyl group or an optionally substituted C2-3 alkenyl group; or (ii) Ra and Rb together with the positively charged nitrogen atom to which they are attached form an optionally substituted 5 or 6 membered ring; or (iii) one of Ra and Rb is an optionally substituted C1-3 alkyl group or an optionally substituted C2-3 alkenyl group, and the other of Ra and Rb together with a group of formula AR1-(CH2) n-N + forms an optionally substituted 5 or 6 membered ring; or (iv) Ra together with a group of formula AR1-(CH2) n-N + forms an optionally substituted 5 or 6 membered ring, and Rb together with a group of formula N +-(CH2) n-AR2 forms an optionally substituted 5 or 6 membered ring; x-is an anion; and AR1 and AR2 each independently comprise an aromatic group; wherein: (I) at least one of AR1 and AR2 comprises a curable ethylenically unsaturated group; (II) the monomer (a) of formula (I) comprises at least two curable ethylenically unsaturated groups; and (III) the molar fraction of component (a) relative to all curable components of the curable composition is at least 0.90.
Resumen de: JP2025140067A
【課題】燃料電池システムがオープンカソード方式のシステムである場合において、間欠停止制御を行ってバッテリの充電を停止させるときに、燃料電池がオーバーヒートすることを抑制できる燃料電池システムを提供すること。【解決手段】本開示の一態様は、燃料電池システム1において、制御部14は、バッテリ12のSOCが所定値V1以上である間欠停止要求時にて、ファン83を高回転数R1で作動させて、すなわち、ファン83の供給量をFCスタック11の発電時の量よりも多くして、FCスタック11を冷却する冷却制御を行った後に、ファン83を停止させる間欠停止制御を行う。【選択図】図4
Resumen de: JP2025140489A
【課題】高加湿条件下での発電性能が低下しにくい固体高分子形燃料電池を提供すること。【解決手段】固体高分子形燃料電池は、第1カソードガス流路、第2カソードガス流路、及び、これらを区画するリブを有するカソード側セパレータを備えている。リブの表面には、第1カソードガス流路と第2ガス流路を繋ぐためのn個(n≧2)の溝が設けられ、n個の溝は、それぞれ、リブと略直交するように配置されている。n個の溝の内、隣接する少なくとも2つの溝は、SBi/SAi>0.15、及び/又は、SDi/SCi>0.15を満たす。但し、SAiはi番目の溝から中間線までの領域Aiの面積、SBiはi番目の溝までの距離がカソードガス流路までの距離より短い領域Biの面積、SCiは中間線から(i+1)番目の溝までの領域Ciの面積、SDiは(i+1)番目の溝までの距離がカソードガス流路までの距離より短い領域Diの面積。【選択図】図5
Resumen de: MX2025005166A
A centrifugal blower system comprising a series of blower units, each blower unit in the series comprising a casing having an axial inlet and a radial outlet, an impeller disposed within the casing for drawing a gaseous medium at a first pressure into the axial inlet and expelling gaseous medium at a second higher pressure through the radial outlet and a motor for driving the impeller; and, a duct connecting the radial outlet of at least one blower unit in the series of blower units with the axial inlet of at least one other blower unit in the series of blower units, wherein the axial inlet of the at least one blower unit in the series of blower units is positioned substantially opposite to the axial inlet of the at least one other blower unit in the series of blower units.
Resumen de: JP2025139769A
【課題】電力系統システムにおいて、蓄電池と水素システム間の電力変換効率を上げる。【解決手段】DCバス5に第1電力変換器DC/DC1が接続される。第1電力変換器DC/DC1には蓄電部(蓄電池)3が接続される。さらに、蓄電部(蓄電池)3に対して充放電を行う水素システムが設けられる。水素システムは、電力を水素に分解する水電解装置ECと、水素を蓄える水素タンク4と、水素を電力に変換する燃料電池FCと、を備える。水素システムは、第2電力変換器DC/DC2を介して、第1電力変換器DC/DC1と蓄電部(蓄電池)3の接続点に接続される。【選択図】図2
Resumen de: JP2025140189A
【課題】燃料ガスの流量制御の精度を向上させる技術を提供する。【解決手段】燃料電池システムとして、ソレノイドバルブとインジェクタとを並列に備えるとともに、その下流側にエジェクタを備える、燃料ガス供給路と、ソレノイドバルブ及びインジェクタよりも上流側の上流供給路内の圧力を検出する第1圧力センサと、燃料ガス供給路のうち、エジェクタよりも下流側の下流供給路内の圧力を検出する第2圧力センサと、制御装置と、を備え、制御装置は、所定の学習条件下において、燃料電池の電流値から燃料ガスの消費流量を算出し、インジェクタのデューティ比を算出し、算出した前記消費流量と算出したデューティ比とを用いて、インジェクタからエジェクタへの燃料ガスの最大供給流量を算出し、第1圧力センサによって検出された第1圧力に、算出された最大供給流量を関連付けて記憶することで、インジェクタの流量特性を学習する、流量特性学習処理を実行する。【選択図】図2A
Resumen de: JP2025141370A
【課題】負荷に出力可能な電力の最大値を算出すること。【解決手段】燃料電池システムは、燃料電池スタックと、燃料電池スタックを駆動するための補機と、燃料電池スタックに発電を行わせる制御装置と、を備える。制御装置は、スタック実電力とシステム実電力との差を補機損として算出する。制御装置は、スタック実電力に対する補機損の割合を補機損割合として算出する。制御装置は、燃料電池スタックが出力可能な電力の最大値であるスタック電力制限値に対し補機損割合を考慮した値を負荷に出力可能な電力の最大値であるシステム電力制限値として算出する。【選択図】図3
Resumen de: JP2025141372A
【課題】各種制御に基づいて、燃料電池モジュール内のガスを置換することができる燃料電池モジュール、及び発電システムを提供すること。【解決手段】燃料電池モジュール10は、水素ガス、又は窒素ガスを燃料電池スタック21に供給する供給路63と、燃料電池スタック21から排出された水素ガスを供給路63に循環させる循環路64と、循環路64から水素ガスを排気させる排気排水弁67と、主制御装置90の指示に基づいて、インジェクタ61、及び排気排水弁67を制御する制御装置100とを備える。制御装置100は、主制御装置90からの置換指令に基づいて、燃料電池スタック21、供給路63、及び循環路64に存在する水素ガス、又は窒素ガスを排気する排気処理を行った後、窒素ガスを充填する充填処理を行う。【選択図】図1
Resumen de: WO2025192620A1
The present invention provides a work vehicle (1) capable of appropriately discharging water and air generated when a fuel cell (60) generates power. The present invention includes: a driver seat (DS); a fuel cell (60); and a discharge pipe (61) for discharging, to the outside, exhaust gas and wastewater generated in conjunction with the generation of power by the fuel cell (60). The discharge pipe (61) is disposed between the driver seat (DS) and the fuel cell (60).
Resumen de: JP2025141484A
【課題】 セルスタックの運転中における燃料極割れの発生を適切に抑制する【解決手段】 固体酸化物形の電気化学単セルは、固体電解質層12と、固体電解質層の表面側に積層配置された空気極14と、固体電解質層の裏面側に積層配置された燃料極16と、燃料極の固体電解質層側と反対側の面である裏面の外周部の少なくとも一部に積層配置された補強部20と、を備える。補強部20の熱膨張率は、燃料極16の熱膨張率よりも小さい。【選択図】 図3
Nº publicación: JP2025141358A 29/09/2025
Solicitante:
株式会社クボタ
Resumen de: WO2025192622A1
The present invention provides a work vehicle (1) capable of making a fuel cell (60) generate electricity with high efficiency without performing a complicated operation. The present invention is provided with: a tank (62) for containing gas; a fuel cell (60) that generates power using the gas; a vehicle body (2) that supports the tank (62) and the fuel cell (60); at least a pair of wheels (30FR, 30FL, 30RR, 30RL) that support the vehicle body (2); and a gas discharge valve (660) for discharging the gas from the tank. The gas discharge valve (660) is disposed within a region corresponding to the space between the pair of wheels (30FR, 30FL, 30RR, 30RL).