Resumen de: WO2025133308A1
The invention relates to the use of at least one element in a cooling circuit using at least one dielectric fluid, wherein: the dielectric fluid is liquid at atmospheric pressure at 23°C and comprises less than 10% by weight of water and glycol ether; the element consists of a polyamide composition comprising: o 35 to 85% by weight of a polyamide matrix having an average C/N ratio greater than or equal to 7; and o 15 to 65% by weight of reinforcing fibres or fillers; the element being in direct contact with the dielectric fluid.
Resumen de: DE102023005238A1
Die Erfindung betrifft eine Schweißvorrichtung (10) und ein damit ausgeführtes Verfahren zum Verschweißen von je zwei Elektroden (24a, 24b) zweier benachbarter Batteriezellen (22a, 22b) mittels eines Zellverbinders (26), umfassend eine Laserschweißeinrichtung (12) sowie einen Niederhalter (16) mit mindestens einem gefederten Druckstück (18) zum Anpressen der zu verschweißenden Bauteile (26, 24a, 24b), wobei die Schweißvorrichtung (10) eine Scanneroptik (13) und Positionserkennung zur Erfassung der Schweißstellen und zur Ausrichtung der Laserschweißeinrichtung (12) und des Laserstrahles (32a,b) umfasst, ferner die Laserschweißeinrichtung (12) und der Niederhalter (16) baulich verbunden sind und das Druckstück (18) eine abgerundete Druckfläche (30) aufweist, welche ausgebildet ist, einen Toleranzausgleich für den Zellverbinder (26) bei der Auflage auf den zu verschweißenden Elektroden (24a, 24b) zu ermöglichen.Dadurch ist eine prozesssichere Verschweißung von geformten Zellverbindern (22) zur verbesserten Bauteilqualität erzielbar, wobei Schweißverbindungen hoher Güte insbesondere im Hinblick auf die elektrische Leitfähigkeit sichergestellt werden können. Insbesondere wird eine Dreh- oder Kippbewegung der Zellverbinder (26) ermöglicht, die sich an unterschiedlich hohe Elektroden anpassen kann.
Resumen de: DE102023135904A1
Vorgestellt wird ein Verfahren zur Herstellung einer elektrochemischen Speicherzelle. Das Verfahren umfasst die Schritte:- Bereitstellen einer flachen, im Wesentlichen kreisförmigen Kontaktscheibe (200) mit wenigstens zwei Kontaktsegmenten (201, 202), die jeweils einen Kreisausschnitt der Kontaktscheibe (200) formen und symmetrisch um den Mittelpunkt (204) der Kontaktscheibe (200) angeordnet sind, und wobei zwischen den Kontaktsegmenten (201, 202) Kreisausschnitte (205, 206) aus der Kontaktscheibe (200) ausgenommen und symmetrisch um den Mittelpunkt (204) der Kontaktscheibe (204) angeordnet sind,- Anordnen eines Elektrodenwickels (190) in einem zylindrischen Zellgehäuse (110), wobei der Elektrodenwickel (190) eine Elektrodenschichtenfolge (1) umfasst,- Kontaktieren des Elektrodenwickels (190), indem ein Randbereich der Elektrodenschichtenfolge mit einer ersten Fläche der Kontaktsegmente (201, 202) der Kontaktscheibe (200) in Kontakt gebracht wird, und- Verschweißen des Elektrodenwickels (190) mit der Kontaktscheibe, indem eine von der ersten Fläche der Kontaktscheibe (200) abgewandte zweite Fläche (208) der Kontaktsegmente (201, 202) mit Schweißbögen (209) beaufschlagt wird, wobei die Schweißbögen (209) zumindest teilweise konzentrisch um den Mittelpunkt (204) angeordnet werden.
Resumen de: DE102024133559A1
Ein Kühlsystem (100) für eine Batterie (102) eines Elektrofahrzeugs wird offenbart. Das Kühlsystem umfasst eine erste Kühlmittelplatte (104), die sich in einem sinusförmigen Muster erstreckt, eine zweite Kühlmittelplatte (106), die von der ersten Kühlmittelplatte beabstandet ist und sich in einem sinusförmigen Muster erstreckt. Jede Zellenreihe einer Vielzahl von Zellenreihen (108) der Batterie ist an mindestens einer der ersten Kühlmittelplatte oder der zweiten Kühlmittelplatte befestigt, und die Konfiguration benachbarter Zellenreihen der Vielzahl von Zellenreihen wechselt zwischen einem nach oben gerichteten Anschlussende (110a) und einem nach unten gerichteten Anschlussende. Das Kühlsystem umfasst ferner einen Kühlmitteldurchgang (112), der zwischen der ersten Kühlmittelplatte und der zweiten Kühlmittelplatte definiert ist, um den Durchfluss eines Kühlmittels zur Kühlung der Batterie des Elektrofahrzeugs zu ermöglichen.
Resumen de: WO2025129838A1
The present application belongs to the technical field of iron phosphate material preparation, and provides a titanium-doped anhydrous iron phosphate material, a preparation method therefor, and a use thereof. The preparation method of the titanium-doped anhydrous iron phosphate material comprises the steps: providing a titanium-containing ferrous sulfate raw material liquid and a titanium-free ferrous sulfate raw material liquid; mixing the titanium-containing ferrous sulfate raw material liquid and the titanium-free ferrous sulfate raw material liquid, to obtain a mixed solution; mixing the mixed solution with an oxidant and a phosphorus source, to obtain a slurry containing iron phosphate and titanium phosphate; sequentially subjecting the slurry to aging, rinsing, drying and sintering, to obtain a titanium-doped anhydrous iron phosphate material. The present application can achieve doping control of elemental titanium in the titanium-doped anhydrous iron phosphate material by means of adjusting the mixing ratio of the titanium-containing ferrous sulfate raw material liquid and the titanium-free ferrous sulfate raw material liquid, so that the elemental titanium content in the final product is stable and controllable; the titanium-doped anhydrous iron phosphate material has a uniform nanoscale particle stacking morphology, which is beneficial for use in preparing battery materials.
Resumen de: WO2025136393A1
The invention relates to an incident management system and method for monitoring a battery energy storage system and providing technical information related to an abnormal event in the battery energy storage system to a plurality of different users in different locations and with different requirements. The incident management system comprises one or more processing units configured to receive data from a plurality of sensors, the data encoding measured properties of the battery energy storage system, and process the received data to identify an abnormal event in the battery energy storage system, obtain information about the abnormal event, and determine a current stage of the abnormal event on a pre-defined incident progress timeline, the pre-defined incident progress timeline comprising a plurality of stages. An operator user interface for use by an operator of the battery energy storage system is configured to output information about the abnormal event. A first responder user interface for use by a first responder is configured to output a subset of the information about the abnormal event and output the current stage of the abnormal event on the incident progress timeline.
Resumen de: CN119744463A
The present invention provides an electrode having a ceramic coating comprising a ceramic powder and a binder, the electrode having a surface roughness Ra of 0.4 mu m to 1.6 mu m, preferably 0.6 mu m to 1.4 mu m, further preferably 0.8 mu m to 1.2 mu m. The invention further provides a lithium ion battery which comprises a positive electrode, a negative electrode, electrolyte and a shell, the positive electrode comprises a positive electrode current collector and a positive electrode active material coated on the positive electrode current collector, and the negative electrode comprises a negative electrode current collector and a negative electrode active material coated on the negative electrode current collector; wherein the positive electrode and the negative electrode are opposite to each other, at least one of the positive electrode and the negative electrode is the electrode with the ceramic coating, and the ceramic coating is located on at least one surface, opposite to each other, of the positive electrode and the negative electrode. The ceramic coating can replace a battery diaphragm in the general sense, and can improve the cycle life and thermal stability of the lithium ion battery.
Resumen de: CN119744463A
The present invention provides an electrode having a ceramic coating comprising a ceramic powder and a binder, the electrode having a surface roughness Ra of 0.4 mu m to 1.6 mu m, preferably 0.6 mu m to 1.4 mu m, further preferably 0.8 mu m to 1.2 mu m. The invention further provides a lithium ion battery which comprises a positive electrode, a negative electrode, electrolyte and a shell, the positive electrode comprises a positive electrode current collector and a positive electrode active material coated on the positive electrode current collector, and the negative electrode comprises a negative electrode current collector and a negative electrode active material coated on the negative electrode current collector; wherein the positive electrode and the negative electrode are opposite to each other, at least one of the positive electrode and the negative electrode is the electrode with the ceramic coating, and the ceramic coating is located on at least one surface, opposite to each other, of the positive electrode and the negative electrode. The ceramic coating can replace a battery diaphragm in the general sense, and can improve the cycle life and thermal stability of the lithium ion battery.
Resumen de: CN119790022A
Exemplary lithium carbonate (Li2CO3) particles may include at least 98 wt% (wt%) of lithium carbonate. Exemplary lithium carbonate (Li2CO3) particles may have a Dv (50) of between 0.08 mu m and 0.43 mu m. Exemplary lithium carbonate (Li2CO3) particles may have a Dn (50) of between 0.015 mu m and 0.5 mu m. Exemplary lithium carbonate (Li2CO3) particles may have a BET surface area of between 10 m2/g and 25 m2/g. An exemplary battery may include a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte. An exemplary positive electrode may have a positive electrode active material layer including a positive electrode active material and a plurality of lithium carbonate (Li2CO3) particles.
Resumen de: EP4576413A1
The present application provides an end cover assembly, a battery cell, a battery, and an electric device. The end cover assembly comprises an end cover body, a fool-proof structural part, and an electrode terminal; the end cover body comprises a first edge and a second edge which are oppositely arranged in the width direction of the end cover assembly; the fool-proof structural part is located on the side of the end cover body facing the interior of the battery cell; the electrode terminal passes through the end cover body; the electrode terminal comprises a connecting area facing the interior of the battery cell; the connecting area is electrically connected to a tab of the electrode assembly; in the width direction, the distance from the connecting area to the first edge is larger than the distance from the connecting area to the second edge; and the fool-proof structural part is at least partially located on the side of the connecting area close to the first edge. The end cover assembly in embodiments of the present application can improve the production efficiency of battery cells.
Resumen de: US2025191853A1
A composition incorporating activated carbon, an electro-stabilizing agent and/or a wettability enhancing agent. Methods of producing conductive activated carbon including a step of combining activated carbon with an electro-stabilizing agent and/or a wettability enhancing agent to form an activated carbon mixture; and exposing the activated carbon mixture to a sweeping gas at an elevated temperature. The electro-stabilizing agent can be copper. The wettability enhancing agent can be aluminum.
Resumen de: EP4576266A1
The present invention relates to a dry composition comprising at least one active material, at least one binder, optionally at least one conductive agent, characterized in that said at least one binder comprises a fluoropolymer and a polyamide thermoplastic polymer.
Resumen de: EP4576267A1
The present invention relates to a dry composition comprising at least one active material, at least one binder, optionally at least one conductive agent, characterized in that said at least one binder comprises, preferably consists of, a polyamide thermoplastic polymer.
Resumen de: EP4574331A1
The invention relates to a process for manufacturing an electrochemical cell comprising in particular:- a step for providing two electrode assemblies (2, 3) comprising each stacks of positive electrodes connected to each other and stacks of negative electrodes connected to each other,- a first step of welding two first connection elements (4, 5) of the electrode assemblies to a first collector (15) of a cover (12),- a step of inserting the electrode assemblies into two respective supporting tools (36, 37) of an assembly tool,- a step of pivoting the supporting tools towards the cover so as to press the electrode assemblies in abutment against each other,- a step of bending the two second connection elements by two second pivoting flaps (55) of the supporting tools, and- a second step of welding the second end portions of the second connection elements to the second collector.
Resumen de: EP4576290A1
The invention relates to a process for manufacturing an electrochemical cell comprising in particular:- a step for providing two electrode assemblies (2, 3) each comprising stacks of positive electrodes connected to each other and stacks of negative electrodes connected to each other,- a first step of welding two first connection elements (4, 5) of the electrode assemblies (2, 3) to a first collector (15) of a cover (12),- a step of pivoting each electrode assembly (2, 3) towards a cover (12) until the electrode assemblies are pressed against each other,- a step of bending two second connecting elements (6, 7) of the electrode assemblies, and- a second step of welding the folded second connection elements (6, 7) to the second manifold (16).
Resumen de: EP4576291A1
The invention relates to a process for manufacturing an electrochemical cell comprising in particular:- a step for providing two electrode assemblies (2, 3),- a step of translating two supporting tools (36, 37) toward the electrode assemblies to insert each electrode assembly into one of the supporting tools,- a step of pivoting two first pivoting flaps (54', 55') of the supporting tools, up to abutment against first tabs (30, 31),- a step of pivoting two second pivoting flaps (54, 55) of the supporting tools, up to abutment against second tabs (32, 33),- a first step of welding the first connection elements (4, 5) to the first collector,- a second step of welding the second connection elements to the second collector.
Resumen de: EP4576313A1
A computer system (600) comprising processing circuitry (602) configured to handle a battery arrangement is provided. The battery arrangement comprises a first battery cell (11a) and a cell monitoring unit (30). The cell monitoring unit (30) is configured to monitor the first battery cell (11a). The processing circuitry (602) is configured to obtain by the cell monitoring unit (30), a first indication indicative of an estimated or measured temperature of the first battery cell (11a). The processing circuitry (602) is configured to, based on the estimated or measured temperature of the first battery cell (11a) in relation to a preferred temperature range of the first battery cell (11a), determine whether or not to transmit a first wake up signal to a battery control module (20). The first wake up signal is arranged to indicate to the battery control module (20) to trigger a thermal management function for the battery arrangement.
Resumen de: EP4576336A1
A battery module (1) for a battery pack (100) is disclosed, comprising:- a plurality of battery cells (2), comprising at least one group of stacked prismatic battery cells (21-24) which are stacked next to each other in the longitudinal direction (L),- a first and a second separate longitudinally extending beam member (31, 32) being offset from each other in the width direction (W),- a plurality of separate crossbeam members (41-45) which are offset from each other in the longitudinal direction (L), wherein each crossbeam member extends in the width direction (W) and wherein the plurality of separate crossbeam members (41-45) mechanically connects the first and second separate longitudinally extending beam members (31, 32) together,- a cooling plate bottom member (5), provided at a bottom portion of the first and second separate longitudinally extending beam members (31, 32) and the plurality of separate crossbeam members (41-45).
Resumen de: EP4576327A1
A battery module (1) for a battery pack (100) is disclosed, comprising:- a first and a second longitudinal frame member (51, 52) extending in the longitudinal direction (L),- at least three crossbeam frame members (61, 62, 63, 64) extending in the width direction (W),- at least two separate cell stacks (2, 2'), wherein each cell stack (2, 2') comprises a set of cylindrical battery cells (3) and a holder (4, 4') in which the set of cylindrical battery cells (3) are received. The disclosure also relates to a battery pack (100) and a vehicle (200)
Resumen de: EP4575024A1
The present invention provides a method of using a chlorination method to recycle metal elements in lithium batteries, including the following steps: Step 1, organic components in the lithium battery are removed, so as to obtain a mixture of powders containing the positive-electrode material; Step 2, the powders are heated and chlorinated by chlorine, at a heating temperature of 500-1200°C; Step 3, gas products of the chlorination are output through a gas-solid filtration device, and then two stages of desublimation are used, wherein the temperature during the first-stage desublimation is set to be below 306°C and above 178°C, so that FeCl<sub>3</sub> is desublimated into solid deposition, which is used for recycling Fe element; the temperature of the second-stage desublimation is set to be below 178°C, so that AlCl<sub>3</sub> is desublimated into solid deposition, which is used for recycling Al element; Step 4, solid products of the chlorination are taken out for recycling the Li element.
Resumen de: EP4575314A1
The present invention provides a method for recycling lithium batteries, including the following steps: Step 1, pretreating the lithium batteries, Step 2, a mixture after the pretreating includes: positive electrodes of batteries, negative electrodes of batteries, and electrolyte; the mixture is subjected to oxygen-free pyrolysis at a pyrolysis temperature of 400-600°C; Step 3, by using a gas-solid filtration device, gas products from the pyrolysis are separated and outputted, wherein anti-corrosion material(s) is(are) used to form filter element of the gas-solid filtration device; Step 4, taking out solid products from the pyrolysis, so as to recycle metal elements; the metal elements include but are not limited to one or more selected from the following: lithium, aluminum, copper, iron, nickel, cobalt, manganese.
Resumen de: EP4575022A1
The present invention provides a method of using a wet method to recycle metal elements in lithium batteries, including the following steps: Step 1, pretreating lithium batteries, so as to obtain a mixture of powders containing positive-electrode materials; Step 2, acid leaching to obtain leachate; Step 3, if the to-be-recycled lithium battery contain a lithium iron phosphate battery, the solid products, obtained after acid leaching and solid-liquid filtration, are heated in an oxygen-containing atmosphere, so as to burn up carbon, then the left is ferric phosphate; Step 4, if the to-be-recycled lithium battery contains a ternary lithium battery, the leachate, obtained after acid leaching and solid-liquid filtration, is sent to an extraction step, wherein diisooctyl phosphate is used as extraction agent, so as to obtain a raffinate containing Li element and an organic phase containing Ni/Co/Mn elements.
Resumen de: EP4576486A1
Die Erfindung betrifft ein Batteriepack (30) für eine mobile Werkzeugmaschine (10), beispielsweise eine Handwerkzeugmaschine, umfassend mehrere Batteriezellen (38) sowie ein Batteriemanagementsystem (52). Es ist dadurch gekennzeichnet, dass das Batteriepack (30) wenigstens einen Schalter (46, 48, 50) aufweist, der vom Batteriemanagementsystem (52) steuerbar ist und der eingerichtet ist, eine Untergruppe (32, 34, 36) der Batteriezellen (38) anzuschalten oder abzuschalten. Ferner betrifft die Erfindung ein Batteriemanagementsystem (52). Sie ermöglicht eine kostengünstige Bereitstellung elektrischer Energie für eine mobile Werkzeugmaschine (10).
Resumen de: EP4575017A1
The present patent application relates to a method of recovering valuable metals from waste batteries comprising- a pyrolysis step comprising pyrolysis of the waste batteries at a temperature of from about 700°C to about 1300°C, thus obtaining pyrolyzed batteries;- a size reduction step, comprising size reduction of the pyrolyzed batteries;- a smelting step, comprising smelting the pyrolyzed, size reduced waste batteries at temperatures of 1350°C or higher under oxidizing conditions. The method shows improved control of the smelting step and the temperature, reduces the amount of slag generated as well as the release of explosive gas.
Nº publicación: EP4574854A1 25/06/2025
Solicitante:
BELENOS CLEAN POWER HOLDING AG [CH]
Belenos Clean Power Holding AG
Resumen de: EP4574854A1
The present invention relates to a polymer electrolyte for a battery cell comprising i) a first polymaleimide polymer comprising first polymaleimide repeat units, wherein the first polymaleimide repeat units are according to R<3>(Q)µ, wherein R<3>, individually, is a polyether or C(H)h(CxH2x+1)i((CH2)ψ)j(CH2OC(O)(CH2)σ)k, wherein i is between 0 and 2; j and k, individually, are between 0 and 4; h is 4 - i - j - k; h + i is between 0 and 2; x is between 1 and 6; ψ is between 1 and 10; σ is between 1 and 20; µ, individually, is at least 2; and Q, individually, is according to formula (I):wherein R<2>, individually, is C1-C16 alkyl, C2-C16 alkenyl, C2-C16 alkynyl or aryl; R<4>, individually, is H, C1-C16 alkyl, C2-C16 alkenyl, C2-C16 alkynyl; Q is covalently bound to R<3> via the sulphur atom of Q; ii) a second polymaleimide polymer comprising second polymaleimide repeat units according to formula (II)wherein R<1>, individually, is H, C1-C16 alkyl, C2-C16 alkenyl, C2-C16 alkynyl; m, individually, is 1 to 5; M<+> is independently an alkali metal ion; X, individually, is H, F, C1-C16 alkyl, C1-C16 fluoroalkyl.