Resumen de: US2025188628A1
An electrolysis cell for chlor-alkali or alkaline water electrolysis comprises two cell elements each defining an electrode chamber by providing a back wall and sidewalls of the electrode chambers, an electrode accommodated in each of the electrode chambers, and a sheet-like separator extending in a height direction and a width direction of the electrolysis cell, the separator being interposed in a joint between the two cell elements and providing a separating wall between the electrode chambers, wherein at least one of the electrodes is made from a sheet of metallic mesh, which is supported by a plurality of webs attached to the back wall of the respective electrode chamber, the webs extending in the height direction of the electrolysis cell, and wherein a plurality of ribs extending in the width direction of the electrolysis cell is carried by the webs, wherein the electrode is disposed on the plurality of ribs.
Resumen de: US2025188630A1
An oxynitride catalyst includes NiaMbNcOd, wherein M is Nb, Mn, or Co, a>0, b>0, c>0, d>0, and a+b+c+d=1. A hydrogen evolution device includes an anode and a cathode dipped in an electrolyte, and the anode includes the oxynitride catalyst. The oxynitride catalyst can be disposed on a support. The oxynitride catalyst may have a polyhedral structure.
Resumen de: US2025188565A1
Improved processes and systems are disclosed for producing renewable hydrogen suitable for reducing metal ores, as well as for producing activated carbon. Some variations provide a process comprising: pyrolyzing biomass to generate a biogenic reagent comprising carbon and a pyrolysis off-gas; converting the pyrolysis off-gas to additional reducing gas and/or heat; reacting at least some of the biogenic reagent with a reactant to generate a reducing gas; and chemically reducing a metal oxide in the presence of the reducing gas. Some variations provide a process for producing renewable hydrogen by biomass pyrolysis to generate a biogenic reagent, conversion of the biogenic reagent to a reducing gas, and separation and recovery of hydrogen from the reducing gas. A reducing-gas composition for reducing a metal oxide is provided, comprising renewable hydrogen according to a hydrogen-isotope analysis. Reacted biogenic reagent may also be recovered as an activated carbon product. Many variations are disclosed.
Resumen de: US2025188631A1
An embodiment water electrolysis catalyst includes iridium oxide including a rutile phase and iridium-nickel oxide including a hexagonal phase. An embodiment method of preparing a water electrolysis catalyst includes preparing a mixture including an iridium precursor, a nickel precursor, and cysteamine hydrochloride, drying the mixture, grinding the dried mixture, and firing a ground product, wherein the water electrolysis catalyst includes iridium oxide including a rutile phase and iridium-nickel oxide including a hexagonal phase.
Resumen de: US2025188629A1
A power control device for a hydrogen production system according to one aspect includes: a power generation device that generates electric power by using renewable energy; a hydrogen production device that produces hydrogen by using electric power generated by the power generation device; and a connector that connects the power generation device and the hydrogen production device to an electric power system. The power control device determines a power command value to be supplied to the hydrogen production device based on electric power generated by the power generation device and electric power that reversely flows to the electric power system so that hydrogen is produced in a state where a reverse power flow to the electric power system continuously occurs.
Resumen de: US2025188633A1
The present invention relates to the generation of at least one electrolysis product, in particular to a hydropower-electrolysis system, a hydro power plant and a method for generating at least one electrolysis product. An electrolysis assembly includes a plurality of electrolysis cells configured to generate, upon provision of a direct electrical current, at least one electrolysis product from a supply medium. A hydropower assembly is electrically connected to the electrolysis assembly for operating the electrolysis cells of the electrolysis assembly based on electrical power generated by the hydropower assembly.
Resumen de: AU2023397261A1
The invention relates to an electrolysis system (1) with a pressure electrolyzer (3) for generating hydrogen (H
Resumen de: DK202330343A1
Water electrolyser stack having a range of half-cell frames which each circumscribes one of an anolytic or a catholytic process chamber and which half-cell frames are arranged and aligned in an array between a proximal electric current injector/collector plate and a distal electric current injector/collector plate, and where each half-cell frame comprises an embedded furrow flow channel adapted to serve an electrolyte flow from a stack internal inflow manifold channel to a corresponding anolytic or catholytic reaction chamber and an embedded furrow flow channel adapted to serve an electrolyte and gas outflow from a corresponding anolytic or catholytic reaction chamber to a corresponding stack internal manifold channel wherein each of the embedded furrow flow channels comprise at least one fluid and/or gas trap section.
Resumen de: TW202409348A
An alkaline electrolyzer system comprising an electrochemical cell in proximity to a spacer frame is provided. The spacer frame contains a polymer composition that includes a polymer matrix that contains at least one polyarylene sulfide.
Resumen de: WO2025119096A1
The present disclosure relates to a method for preparing an oxygen evolution electrode, an oxygen evolution electrode and an electrolytic cell. The method (100) comprises: preparing a thin film on the surface of a conductive substrate by means of magnetron sputtering, wherein the thin film at least contains a catalyst substance serving as a catalyst in an oxygen evolution reaction and a soluble substance that can dissolve in an alkaline solution (102); and making the thin film come into contact with the alkaline solution, such that the soluble substance dissolves in the alkaline solution, so that a porous catalyst layer consisting of the catalyst substance is formed on the surface of the conductive substrate, and the conductive substrate and the porous catalyst layer form an oxygen evolution electrode (104). The method of the present disclosure can improve the catalytic activity and stability of an oxygen evolution electrode, and facilitates large-scale oxygen evolution electrode preparation, and can effectively reduce the production cost and the application cost.
Resumen de: WO2025121289A1
Provided is a membrane electrode assembly capable of suppressing hydrogen crossover. The membrane electrode assembly is for solid macromolecule-type water electrolysis and comprises: an anode having a catalyst layer; a cathode having a catalyst layer; and a solid macromolecule electrolyte membrane disposed between the anode and the cathode. At least one of the catalyst layer in the anode and the catalyst layer in the cathode includes a fluorine-containing polymer having an ion exchange group, and having a unit having a cyclic ether structure.
Resumen de: WO2025122112A1
The invention relates to a hydrogen sulfide separation system (A) and method for producing pure hydrogen (30) with high efficiency and environmental sustainability for the energy sector, while also converting sulfur (40) into economic value by producing sulfuric acid (60) The system includes a gasification unit (100) to convert liquid hydrogen sulfide (10) into gaseous hydrogen sulfide (20), an electrolyzer (200) equipped with a palladium-alloy membrane (290) to separate hydrogen (30) and sulfur (40) through electrolysis, and an oxidation unit (300) to oxidize sulfur (40) using hydrogen (30) and oxygen (50), resulting in sulfuric acid (60). The method enhances energy efficiency, reduces operating costs, and offers a sustainable solution for hydrogen production.
Resumen de: KR20250085126A
본 발명은 수전해 수소발생반응용 Pt/LaNiO3 촉매에 관한 것으로서, 상세하게는, 수전해 시스템에서 수소발생반응(HER) 전극에 적용되는 신규 촉매로써 수전해시 동일 전압에서의 수소발생 반응성이 우수하며, 또한 과전압을 낮추는 효율, 촉매 안정성이 우수한 수전해 수소발생반응용 Pt/LaNiO3 촉매에 관한 것이다.
Resumen de: KR20250085401A
본 발명은 이퓨얼(e-fuel)을 제조하기 위한 시스템 및 방법에 관한 것으로, 본 발명에 따르면, 최근, 환경오염 문제가 날로 심각해지면서 기존의 석유나 가스 등의 연료를 대신하여 친환경 연료에 대한 요구가 높아짐에 따라 기존의 화석연료에 비해 이산화탄소 배출량을 크게 감소할 수 있는 친환경 연료로서 이퓨얼(E-Fuel)이 제시된 바 있으나, 전체적인 제조공정이 복잡하여 가격이 매우 높은 단점이 있었던 종래기술의 이퓨얼 제조시스템 및 방법들의 문제점을 해결하기 위해, 수소(H2)와 이산화탄소(CO2)를 이용하여 촉매반응을 통해 친환경적으로 이퓨얼을 생성할 수 있도록 구성됨으로써, 보다 친환경적으로 이퓨얼을 생산할 수 있는 동시에, 이퓨얼 제조시스템의 생산성을 높이고 전체적인 비용을 절감할 수 있도록 구성되는 수소와 이산화탄소를 이용한 이퓨얼 제조시스템 및 방법이 제공된다.
Resumen de: US2025186304A1
A hydrogen generation device includes a tubular tank and a top lid combined with the tank. An immersion tube in which a hydrogen generating agent package is stuffed is placed in the tank. The hydrogen generating agent package is submerged in water after water is poured in the tank to generate hydrogen, which is released through a tank opening of the tank. The hydrogen generating agent package accommodates hydrogen generating agent powders including calcium oxide and aluminum powders, both of which are mixed and wrapped with a nonwoven fabric, as well as a little catalytic sodium carbonate added inside. For inhibition of free radicals and promotion of metabolism, the hydrogen generation device is further provided with a connector and a hose for a skin-care instrument, a nasal mask, an eye shield or an ear cleaner through which hydrogen is supplied as required.
Resumen de: WO2025118002A1
The invention relates to a method (1000) for operating an electrolysis system (10) which has at least one electrolyzer stack (100), with an air side (120) and a reactant side (130), and different operating situations. The method (1000) has the steps of detecting the operating situation of the electrolysis system (10) and controlling the electrolysis system (10) on the basis of the detected operating situation. In the method (1000), the operating situation of the electrolysis system (10) is determined to be a special operating situation if the detected operating situation deviates from a normal operation of the electrolysis system (10) for generating a synthesis gas from a reactant as intended. For the detected special operating situation, at least one electric heater (221, 222) is controlled so as to control the temperature of air which can be supplied to the air side (120) in order to control the temperature of the electrolyzer stack (100). Furthermore, for the special operating situation, a heating gas is guided to the reactant side (130), said heating gas having at least one protective gas. The invention also relates to a computer program product, to a control device (20) for carrying out the method (1000), and to an electrolysis system (10) comprising the control device (20).
Resumen de: EP4568049A1
Provided is an electrolyzer power control system that includes a reactive harmonic current reference generation stage. The reactive harmonic current reference generation stage selects a reactive power set point for reactive power drawn by a rectifier from a grid, determines a reactive power current reference based on the reactive power set point, aggregates the reactive power current reference with a reference current of harmonic currents that the rectifier injects in or draws from the grid, determines a reactive harmonic current reference that compensates for both the reactive power and the harmonic currents and outputs the reactive harmonic current reference. Switching signals that operate the rectifier are generated based on the reactive harmonic current reference.
Resumen de: EP4567153A1
A method of electrolysing water, the method comprising:- providing an electrolyser comprising an anode; a cathode and optionally a separator;- contacting the cathode and/or the anode with an aqueous alkaline solution comprising water; and- electrolysing the water using a potential difference from the anode to the cathode,wherein at least one of the cathode and the separator comprises a substrate and a coating, wherein the coating comprises 9.5 to 35 wt% chromium; 10 to 75 wt% cobalt; and 10 to 60 wt% one or more further transition metals and/or one or more non-metallic elements selected from C, P, N and B, and wherein the coating catalyses hydrogen evolution at the cathode.
Resumen de: EP4567157A2
An electrolyzer system includes stacks of electrolyzer cells configured receive steam and air, and output a hydrogen product stream and an oxygen exhaust stream, and a first heat pump configured to extract heat from the oxygen exhaust stream to generate a first portion of the steam provided to the stacks.
Resumen de: CN119630834A
The invention relates to a method for heating a furnace comprising radiant tubes and capable of heat-treating a running steel product, comprising the following steps: i. Supplying H2 and O2 to at least one of said radiant tubes such that said H2 and said O2 combine into heat and steam; ii. Recovering said steam from said at least one of said radiant tubes; iii. Electrolyzing the steam to produce H2 and O2; iv. Supplying said H2 and O2 produced in step iii to at least one of said radiant tubes such that said H2 and O2 combine into heat and steam.
Resumen de: EP4567159A2
There is disclosed an electrolyser (10, 20, 50) for operation at supercritical conditions, in which chambers (200, 210, 520) for retaining respective fluid reaction products are separated by a porous wall which permits a flow of electrolyte fluid therethrough and which inhibits a reverse flow of the respective reaction product. There is also disclosed a method of operating an electrolyser.
Resumen de: AU2023338223A1
00049 An iridium-based catalyst and method of making the catalyst are described. The catalyst comprises a catalytic material comprising iridium oxide or a mixture of iridium and iridium oxide nanoplates. It may have a BET surface area of at least 50 m
Resumen de: KR20250084643A
본 발명은 수전해용 촉매 제조방법 및 수전해용 촉매에 관한 것으로서, 본 발명에 따른 수전해용 촉매 제조방법은, 탄소 소재를 준비하는 단계; 상기 탄소 소재 상에 니켈을 도금하는 단계; 상기 니켈에 금을 코팅하는 단계; 이리듐을 드롭캐스팅하는 단계; 및 열처리하는 단계;를 포함하고, 상기 니켈, 상기 금 및 상기 이리듐의 중량비는 1 : 12~16 : 2~4인 것을 포함한다.
Resumen de: EP4567158A1
Provided is a hydrogen production system (100) including: an electrolysis module (19) that supplies steam to a hydrogen electrode (11) including a metal component and produces hydrogen through steam electrolysis; a hydrogen storage facility (40) that stores the generated hydrogen; a steam supply unit (20) that supplies steam to the hydrogen electrode (11); a regulation unit (50) that regulates a supply amount of the hydrogen supplied from the hydrogen storage facility (40) to the hydrogen electrode (11) and a supply amount of the steam supplied from the steam supply unit (20) to the hydrogen electrode (11); and a control device (80) for controlling the regulation unit (50) to switch a heating medium supply state in which a heating medium is supplied from a heating medium supply unit (70) to the hydrogen electrode (11) to a steam supply state in which steam is supplied from the steam supply unit (20) to the hydrogen electrode (11), in response to the electrolysis module (19) exceeding a first switching temperature when activating the electrolysis module (19).
Nº publicación: EP4565728A1 11/06/2025
Solicitante:
TOPSOE AS [DK]
Topsoe A/S
Resumen de: US2025149602A1
A SOC stack system comprises one or more solid oxide cell stacks and multi-stream solid oxide cell stack heat exchanger(s).