Resumen de: KR20250066721A
본 발명의 물분해 전기 촉매 전극은 카본 페이퍼를 포함하는 기재; 및 상기 기재 상에 형성되며, 셀레늄 도핑 계층적 니켈-코발트 하이브리드 구조체를 포함할 수 있다.
Resumen de: AU2023303893A1
An estimation system for estimating current efficiency of an electrolyser comprises a data processing system (105) for computing heat loss of the electrolyser based on specific heat capacity of electrolyte, a flow rate of the electrolyte in a cathode side of the electrolyser, a flow rate of the electrolyte in an anode side, a temperature difference (T1c - T0c) between electrolyte circulation outlet and inlet of the cathode side, and a temperature difference (T1a - T0a) between electrolyte circulation outlet and inlet of the anode side. The current efficiency is estimated based on a difference between electric power supplied to the electrolyser and the computed estimate of the heat loss, and on a product of thermoneutral voltage of electrolysis cells of the electrolyser and electric current supplied to the electrolyser.
Resumen de: AU2023333919A1
A porous ion-permeable separator membrane with an asymmetric pore structure in which the top of the membrane (the side opposite the porous substrate) has smaller pores than the pores in the rest of the polymer coating (i.e., closer to the porous substrate) is described. The porous ion-permeable asymmetric composite membrane comprises polymers, inorganic particles, and a porous substrate which is stable at a pH of 8 or higher.
Resumen de: EP4553195A1
This control device for a hydrogen production apparatus is intended to be used for a hydrogen production apparatus including an electrolyzer for electrolyzing water and a rectifier for supplying a direct-current electric power to the electrolyzer, the control device being provided with: a voltage control unit which is configured so as to adjust an output voltage output from the rectifier to the electrolyzer in such a manner that the output voltage of the rectifier is coincident with a set voltage; and a voltage set unit which is configured so as to set the set voltage to a first voltage that is larger than a rated voltage for the electrolyzer in at least a portion of the period during the start-up of the hydrogen production apparatus.
Resumen de: EP4553191A1
Die vorliegende Erfindung betrifft ein pulverförmiges Katalysatormaterial, das sich insbesondere für die Sauerstoffentwicklungsreaktion bei der Wasserelektrolyse eignet. Das Katalysatormaterial umfasst ein ungeträgertes Ruthenium-Iridium-Oxid, wobei das Verhältnis der Gewichtsanteile von Iridium (Ir) zu Ruthenium (Ru) bezogen auf das Gesamtgewicht des ungeträgerten Ruthenium-Iridium-Oxids nicht größer als 4,5 ist. Das ungeträgerte Ruthenium-Iridium-Oxid weist eine Pulverleitfähigkeit von mindestens 30 S/cm auf. Die Erfindung betrifft außerdem ein Verfahren zur Herstellung eines solchen pulverförmigen Katalysatormaterials, eine Zusammensetzung, eine Katalysatorschicht, eine Elektrode und eine elektrochemische Vorrichtung enthaltend das pulverförmige Katalysatormaterial, sowie ein Verfahren zur Herstellung von Wasserstoff unter Verwendung des pulverförmigen Katalysatormaterials.
Resumen de: CN119403757A
The invention relates to a method for cracking ammonia gas, comprising:-feeding a first portion of the ammonia gas into a burner (14) arranged in a cracking vessel (12); -feeding an oxygen-containing gas into the burner (14); -combusting a first portion of the ammonia gas, forming a combustion zone (101) in the cracking vessel (12), generating heat; feeding a second portion of the ammonia gas into a cracking zone (102) of the cracking vessel (12) outside the combustion zone (101); and-cracking the second portion of the ammonia gas with heat generated by combustion of the first portion of the ammonia gas and generating a product gas comprising hydrogen and nitrogen from the second portion of the ammonia gas. The invention also relates to a cracking device (10) for cracking ammonia gas.
Resumen de: WO2024010614A1
The objective of the present invention is to take advantage of new and improved processes and catalysts that can facilitate the efficient, direct CO2 conversion (CO2C) reaction to e-methane at temperatures less than about 350°C in one step.
Resumen de: CN119497766A
The method 5 of operation of an electrolysis system with periodic polarity reversal in order to activate and/or regenerate electrodes (4, 5) in an electrolysis system (1), the polarity between the electrodes (4, 5) is periodically reversed, which results in the production of hydrogen gas in the oxygen gas in the anode chamber (2). In order to prevent the occurrence of explosive gas mixtures in the system, the duration of the activation and/or regeneration period 10 is limited to less than 2% of the duration of the normal production period.
Resumen de: EP4553037A1
The invention concerns a method for producing hydrogen by continuous-flow photocatalytic water splitting allowing higher water concentration to be attained in the reaction volume and therefore higher rates of reaction in comparison with the prior art. The invention also concerns an associated apparatus.
Resumen de: EP4553193A1
The present disclosure relates generally to integrated processes for producing H<sub>2</sub> and CO from carbon dioxide and water through electrolysis, in particular using an electrolyzer cell. In particular, the disclosure relates to a process comprising: providing a electrolysis feed stream comprising carbon dioxide; electrolyzing carbon dioxide of the electrolysis stream in an electrolyzer cell to form carbon monoxide; electrolyzing water to form hydrogen gas; providing a H<sub>2</sub>/CO stream comprising at least a portion of the carbon monoxide from the electrolysis of carbon dioxide and at least a portion of the hydrogen gas from the electrolysis of water to a Fischer-Tropsch reactor.
Resumen de: CN119547229A
The invention relates to a bipolar plate (100) for a chemical energy converter (200, 300). The bipolar plate (100) comprises:-a plurality of channels (101) for conducting an operating medium of the energy converter (200, 300),-a plurality of supply openings (103) for supplying the plurality of channels (101) with an operating medium,-a plurality of distribution channels (105) for distributing the operating medium onto the plurality of channels (101), each distribution channel (105) of the plurality of distribution channels (105) extends between a corresponding supply opening (103) of the plurality of supply openings (103) and a corresponding channel (101) of the plurality of channels (101), and wherein the distribution channels (105) of the plurality of distribution channels (105) extend between the corresponding supply opening (103) of the plurality of supply openings (103) and the corresponding channel (101) of the plurality of channels (101). Each supply opening (103) of the plurality of supply openings (103) has an at least partially curved edge region at least on a distribution channel side facing a corresponding distribution channel (105) of the plurality of distribution channels (105).
Resumen de: CN119980321A
本发明公开了一种电催化析氢催化剂及其制备和应用,该催化剂包括负载有可催化电催化析氢反应的金属元素的多孔碳载体,所述多孔碳载体中含有微孔、介孔和大孔共存的多级孔道,多孔碳载体中掺杂有非金属元素。本发明利用杂原子掺杂的石墨烯量子点(GQDs)为碳源,以M/Zn‑ZIF‑8为金属源和自牺牲模板,加入Ru盐后经冷冻干燥得到前驱体。通过调控前驱体中GQDs、M/Zn‑ZIF‑8和Ru盐的质量比,构建紧密相连的介孔/大孔结构,使MRu合金纳米颗粒均匀分布于具有空腔的碳壁上,形成多级孔MRu催化剂,克服了GQDs衍生催化剂仅含有微孔的难点。该催化剂具有优异的传质特性和高比表面积,显著提升了HER的反应活性。
Resumen de: AU2023264575A1
Provided herein are systems and methods for generating hydrogen and ammonia. The hydrogen is generated in an anion exchange membrane-based electrochemical stack. The hydrogen generated in the stack may be used to generate ammonia or may be used for other applications requiring hydrogen. The feedstock for the anion exchange membrane-based electrochemical stack may be saline water, such as seawater. A desalination module or a chlor-alkali stack may be used to treat the saline water prior to electrolysis in the anion exchange membrane-based electrochemical stack.
Resumen de: JP2025073977A
【課題】簡易に提供可能な光触媒シートおよび水素の製造に適用される水分解装置を実現する。【解決手段】水分解光触媒シート(1)は、基材シート(2)上に混合粒子層(3)を有する。混合粒子層(3)には水素生成用光触媒粒子(4)、酸素生成用光触媒粒子(5)および導電材料粒子(6)が分散して存在し、水素生成用光触媒粒子(4)と酸素生成用光触媒粒子(5)との間に導電材料粒子(6)が介在する構造が含まれる。【選択図】図1
Resumen de: CN119977080A
本发明涉及水处理设备技术领域,公开了一种活性氢水发生器及活性氢水的设备及生产方法,包括氢水发生器与水箱,所述氢水发生器与所述水箱相固定,所述氢水发生器内部靠近所述水箱的一侧前端设置有储水瓶,所述氢水发生器的顶部转动连接有盖板,所述氢水发生器的内部设有电解槽,所述电解槽的外周设有防护框,所述防护框的外周设有冷却机构所述电解槽的内部左右两侧均滑动连接有电极板,所述电解槽的中部滑动连接有两个隔膜,所述隔膜远离所述电解槽的一侧设有连接机构。通过推块、推杆与活动块的配合工作,在安装电极板时相比传统的多步骤固定方式,本发明显著提高了组件安装的便捷性与安装效率。
Resumen de: CN119980341A
本发明涉及电解水制氢技术领域,公开了一种析氢电极催化剂及其制备方法和制备氢气的方法。本发明提供的析氢电极催化剂具有独特的树枝状结构,表现出优秀的析氢能力。该催化剂采用Ni和Ag作为主要原料,大幅降低了电解水制氢的催化剂的成本,并且由于该催化剂的制备方法简单、原料易得,并且对于设备要求较低,从而具有规模化应用的潜力。
Resumen de: CN119980347A
本发明涉及氢气制备、储存技术领域,尤其涉及一种制充氢设备用控制系统和控制方法,制充氢设备用控制系统包括控制模块;供水模块,供水模块与控制模块电连接,供水模块与电解槽连通;散热模块,散热模块与控制模块电连接;压力调节模块,压力调节模块设置在氢气管路上,用于对氢气管路的压力进行调节;供电模块,供电模块向一组或多组电解槽供电,供电模块与控制模块电连接。本发明能够对制充氢设备的氢气管路压力、温度以及水量和水质进行控制,从而保证氢气制取和存储顺利进行。
Resumen de: CN119980282A
本发明公开了一种电解水系统,电解槽、阳极气液分离罐、阴极气液分离罐、阳极主管路、阴极主管路及回流主管路;阳极气液分离罐内设阳极隔腔板,以将阳极气液分离罐内腔分隔为阳极低位腔和阳极高位腔,阳极低位腔与阳极高位腔顶部相连通,阳极气液分离罐上设有阳极三通阀,阳极三通阀一个出口连通于阳极低位腔上方,另一出口连通于阳极高位腔上方;阴极气液分离罐内设阴极隔腔板,以将阴极气液分离罐内腔分隔为阴极低位腔和阴极高位腔,阴极低位腔与阴极高位腔顶部相连通,阴极气液分离罐上设有阴极三通阀,阴极三通阀一个出口连通于阴极低位腔上方,另一出口连通于阴极高位腔上方。本发明还公开一种采用上述电解水系统的电解水系统冷启动方法。
Resumen de: CN119980210A
本发明属于电解水制氢技术领域,公开了一种平方米级不锈钢表面原位生长双金属磷化物一体式电极、制备方法及其应用,所述制备方法,包括以下步骤:(1)将不锈钢基底依次用去离子水、丙酮、乙醇超声清洗,然后用稀盐酸溶液加热清洗,最后去离子水冲洗后得到表面清洁的不锈钢基底;(2)将磷源和过渡金属阳离子盐溶解在水溶液中常温搅拌使其混合均匀;(3)将步骤(1)所得表面清洁的不锈钢网放入步骤(2)的金属盐溶液中进行加热反应,反应结束将所得样品用水洗清后干燥。本发明的优点在于制备工艺简单,成本低,反应问题较低,制备的一体式电极具有优异的电催化活性和稳定性,且可实现大规模制备,适用于大规模的工业化碱性电解水制氢。
Resumen de: CN119980317A
本发明公开了一种用于碱性电解水制氢的过渡金属基复合电极及其制备方法,包括如下步骤:1)将第一过渡金属盐和第二过渡金属盐分别均匀溶解于同种有机醇中,然后将所得两种盐醇溶液混合,得到均一稳定的电沉积液;2)采用两电极体系,以导电基体为阴极,将阴极和阳极浸入电沉积液中,进行电化学沉积,然后进行洗涤,干燥,得到均匀沉积有二元合金颗粒层的过渡金属基复合电极。本发明选择单一有机醇作为电极液溶剂,前过渡金属氯酸盐为溶质,避免了金属氧酸盐的引入,实现由较低价态前过渡金属离子到粗糙合金颗粒沉积层的直接转变,有效降低沉积能耗,提升沉积效率。同时具有更强本征析氢活性,且兼顾良好的机械强度与化学稳定性,适宜推广。
Resumen de: CN119980302A
本发明公开了一种快速制备单原子催化剂的方法及其在电解水制氢中的应用,其中方法包括以下步骤:S1:将金属无机盐、发泡剂和碳基有机物按照一定比例秤取并倒入玛瑙研钵中研磨使其混合均匀;S2:将上述混合物倒入陶瓷坩埚,加入助燃剂并点燃,混合物迅速燃烧膨胀并产生一束多孔黑色泡沫状材料;S3:将上述冷却后的黑色泡沫状材料取出并研磨,得到目标碳基金属单原子催化剂材料;本发明制备得到的单原子催化剂中金属原子分散良好,同时具有简单快速、制造成本低、结构蓬松、电导率高、电催化活性好和易于大规模制备的优点。
Resumen de: CN119979916A
本发明公开一种用于阴离子交换膜电解水的纳米合金催化剂及其膜电极的制备方法,当不加入锰盐、铈盐、铬盐、钴盐、镧盐、钌盐、铱盐中的任意一种时,得到一种NiFe二元合金粉末,Ni的含量为90%~100%,Fe的含量为0%~10%;当加入锰盐、铈盐、铬盐、钴盐、镧盐、钌盐、铱盐中的任意一种时,得到一种NiFe三元合金粉末,Ni的含量为76%~96%,Fe的含量为4%,第三种元素的含量为0%~20%。根据本发明制备的用于阴离子交换膜电解水的纳米合金催化剂材料耐蚀性好和稳定性高,进而提升了全解水效率,合成方法简单,且所用金属盐成本低廉,通过喷涂可均匀负载在基底载体上,易于实现大电流密度下的全解水工业应用。
Resumen de: CN119980314A
本发明公开了一种高析氢活性的多孔Pt‑CuOx催化剂及其制备方法与应用。本发明的多孔Pt‑CuOx催化剂具有微纳米分级孔和触角状表面结构。制备方法:将铜粉和铝粉按比例混合均匀,混合粉末进行压制成型、粉末烧结得到CuAl金属间化合物,烧结产物放入NaOH溶液中腐蚀得到微纳米多孔CuOx,干燥粉末与PVP在溶液中搅拌均匀,离心去除上清液,加入铂金属盐溶液进行搅拌蒸发,干燥得到Pt‑CuOx材料。本发明Pt‑CuOx催化剂利用两步脱合金‑浸渍法负载Pt纳米团簇,构筑出微纳米级分级孔结构且表面呈触角状分布,在析氢反应中表现出了低的析氢过电位150mV和低的Tafel斜率125mV dec‑1,相比于未负载Cu基材料过电位提高80mV,表面特殊结构提高了活性位点可及性。
Resumen de: AU2024227784A1
An apparatus and process for the activation of catalyst material utilized in ammonia cracking can include an initial use of hydrogen and heat to perform an initial stage of catalyst activation and a subsequent use of ammonia and heat to perform a subsequent state of catalyst activation. The subsequent use of ammonia can be configured so that different catalytic material at different plant elements are activated in a pre-selected sequence to provide activation of the catalytic material utilized in different plant elements. Some embodiments can be configured to avoid excess temperatures that can be detrimental to equipment that can be positioned upstream of a furnace in some embodiments while also avoiding sintering of the catalytic material.
Nº publicación: KR20250065552A 13/05/2025
Solicitante:
디아이씨가부시끼가이샤
Resumen de: CN119384315A
The present invention provides a composite containing molybdenum disulfide and molybdenum trioxide, the molybdenum disulfide containing a 3R crystal structure, and the content ratio of a molybdenum trioxide equivalent value (B) calculated from the molybdenum content determined by XRF analysis of the composite with respect to the total mass of the composite being 5-90 mass%. The invention provides a catalyst ink which comprises the composite and a solvent. Also provided is a method for producing the composite, which comprises a firing step in which molybdenum trioxide is heated at a temperature of 400 DEG C or less in the presence of a sulfur source.