Resumen de: WO2025099844A1
An electrolytic cell system (1) comprises: a plurality of cell stacks (11); a control device (40, 40a); and a power source (30). The plurality of cell stacks (11) generate a generated gas containing hydrogen by electrolyzing a raw material gas containing water. The plurality of cell stacks (11) are electrically connected in parallel. The control device (40, 40a) controls the operation of the plurality of cell stacks (11). The plurality of cell stacks (11) include two or more cell stacks (11) in which the steady power required for steady operation near thermal neutral voltage is mutually different. The control device (40, 40a) suspends the operation of at least one cell stack (11), of the two or more cell stacks (11), in a manner approximate to the amount of decrease in the power supplied from the power source (30).
Resumen de: WO2025101135A1
The invention relates to a pure hydrogen gas production system (A) for use in the field of hydrogen production technologies for various applications such as energy storage, fuel cells and industrial chemistry processes, characterized in that; at least a water inlet nozzle (30) for the introduction into the system (A) of water to which potassium hydroxide has been added, at least one anode acting as the positive pole (60) and at least one cathode (70) acting as the negative pole during the electrolysis process, conductive plates (100) that ensure efficient delivery of electric current to the electrolysis cell, at least one palladium alloy membrane (90) with high selectivity and permeability, which is positioned in the space (102) formed in the body of said conductive plates (100), and which enables the separation of pure hydrogen gas by purifying the HHO gas produced as a result of the separation of water molecules by the electric current passing between said anode (60) and cathode (70) during the electrolysis process.
Resumen de: WO2025099872A1
An electrolytic cell (3) comprises: a hydrogen electrode chamber (12); an oxygen electrode chamber (13); a metal support body (6) having a plurality of communication holes (6a) formed in a first main surface (6b); and a cell body section (7) disposed on the first main surface (6b). The cell body section (7) comprises: a hydrogen electrode (14) formed on the first main surface (6b) and disposed in the hydrogen electrode chamber (12); an oxygen electrode (15) disposed in the oxygen electrode chamber (13); an electrolyte (16) disposed between the hydrogen electrode (14) and the oxygen electrode (15); and a current collection member (18) disposed on the oxygen electrode (15) and inside the oxygen electrode chamber (13). The pressure in the oxygen electrode chamber (13) is higher than the pressure in the hydrogen electrode chamber (12).
Resumen de: WO2025099868A1
An electrolysis cell system (1) comprises an electrolysis cell (10), a first supply path (L1), a second supply path (L2), a first pressure adjustment unit (60), a second pressure adjustment unit (80), and a controller (130). The electrolysis cell (10) has a hydrogen electrode chamber (12) and an oxygen electrode chamber (13). The first supply path (L1) supplies a raw material gas containing water vapor to the hydrogen electrode chamber (12). The second supply path (L2) supplies compressed air to the oxygen electrode chamber (13). The first pressure adjustment unit (60) is provided in the first supply path (L1). The second pressure adjustment unit (80) is provided in the second supply path (L2). The controller (130) controls the first pressure adjustment unit (60) and the second pressure adjustment unit (80) to adjust a first pressure in the hydrogen electrode chamber (12) and a second pressure in the oxygen electrode chamber (13).
Resumen de: WO2025098180A1
A preparation method for a cobalt-iridium nanocrystal comprises: mixing an iridium salt, an organic ligand, a reducing solvent and a centrifugal liquid to form a first precursor, and maintaining the temperature of the first precursor; and mixing the first precursor with a cobalt salt in a protective atmosphere to form a second precursor, and maintaining the temperature to carry out a reaction to obtain the cobalt-iridium nanocrystal. According to the preparation method, a centrifugal liquid is used as a raw material, improving the yield, crystallinity and electrocatalytic activity of the cobalt-iridium nanocrystal, and reducing the synthesis cost. The present invention also relates to a cobalt-iridium nanocrystal and a water electrolysis catalyst.
Resumen de: WO2025098254A1
Provided in the present invention are an anode for a PEM water electrolytic cell and a preparation method for the anode. The anode comprises a stainless steel base body and a layered oxide structure generated on the surface of the stainless steel base body in situ, wherein the layered oxide structure comprises a manganese-deficient inner layer and a manganese-rich outer layer, the manganese-rich outer layer comprising a crystal manganese oxide secondary outer layer and an amorphous iron-containing manganese oxide outermost layer. The layered oxide structure of the surface of the anode of the present invention can maintain long-time catalytic activity for electrolysis of water and stability under acidic conditions, and an appropriate surface structural component selection solves the problems of corrosion and stability of self-catalysis and non-noble metal electrodes in an acidic environment. The anode provided in the present invention significantly reduces the present cost of hydrogen production based on a noble metal catalyst, and is expected to solve high-cost problem of PEM large-scale electrolysis hydrogen production.
Resumen de: WO2025097621A1
A hydrogen refueling station, a hydrogen energy automobile, and a hydrogen refueling system. The hydrogen refueling system comprises a decomposition device (10), a transfer device (20), a storage device (30) and a recombination device (40); the decomposition device is configured to decompose water into hydrogen and oxygen; the transfer device is configured to transport hydrogen into the storage device and discharge oxygen into the environment; the storage device is configured to store the hydrogen transported by the transfer device; the recombination device is configured to receive the hydrogen provided by the storage device and the oxygen in the environment, and the hydrogen and the oxygen react in the recombination device to generate a current. When the hydrogen refueling system of the present invention is used for hydrogen refueling of the automobile, a way to perform real-time hydrogen production and hydrogen refueling is used, such that it is not necessary to build a large hydrogen storage tank, which saves the long-distance transportation of hydrogen and reduces the construction cost and operation cost of a hydrogenation system.
Resumen de: WO2025097294A1
Disclosed in the present application are an apparatus for producing hydrogen from alkaline water and a system for producing hydrogen. The apparatus for producing hydrogen comprises an alkaline-water electrolytic cell, wherein a plurality of electrode plates are inserted into the alkaline-water electrolytic cell, and the plurality of electrode plates are sequentially arranged at set intervals; when the electrode plates are powered on, the plurality of electrode plates are arranged in a manner that an anode and a cathode face each other; and at least some of the plurality of electrode plates are each provided with an elastic assembly. In the present application, an elastic assembly is provided in an electrode plate to push the anode to the cathode as much as possible, thereby reducing the voltage of a unit cell; in addition, during process control, a gas-phase pressure on the anode side is maintained higher than that on the cathode side, such that the purity of a gas generated by means of an electrolytic reaction is reduced, and the safety of the electrolytic cell and process for producing hydrogen from alkaline water is improved.
Resumen de: WO2025097201A1
The present invention relates to a method of producing an electrocatalyst, an electrocatalyst obtained by the method, an electrode coated with the electrocatalyst, an electrolyser comprising the electrode and a method of producing hydrogen using the electrolyser In particular, the present invention relates to a bimetallic electrocatalyst for use in hydrogen evolution reaction (HER).
Resumen de: KR20250067422A
본 발명의 내구성이 우수한 복합재료 촉매 및 이의 제조방법은 카본블랙(C) 지지체; 및 상기 카본블랙(C) 지지체에 담지되고 표면에 백금쉘(Pt-shell)이 형성된 구리 나노와이어(Cu NW)를 포함하여, 수소 발생 반응의 촉매 활성 및 전기화학적 내구성이 우수한 복합재료 촉매 및 이의 제조방법에 관한 것이다.
Resumen de: JP2025075699A
【課題】優れた電極性能を発揮できる水電解装置用の電極を提供する。【解決手段】ここに開示される電極1は、導電性基材10と、少なくともNi-Fe酸化物と金属Niとを含む触媒層20とを備えている。この触媒層20は、導電性基材10の上に形成された第1層21と、第1層21の上に形成され、Fe元素の含有量が第1層よりも多い第2層22とを備えている。そして、導電性基材10から触媒層20の表面20aに向かう元素分析において、第1層21におけるFe率の増加割合が0.17%/nm以上であり、第2層22におけるFe率の増加割合が0.17%/nm未満である。そして、第1層21の厚みT1に対する第2層22の厚みT2の割合が0.9以下である。かかる構成の電極1は、水電解装置用の電極として優れた性能を発揮できる。【選択図】図2
Resumen de: JP2025076322A
【課題】親水性が高くイオン透過性が良好で、気泡の付着によりイオン透過性が阻害されることがなく、ガス遮断性が良好であり、長期の電解においてもその性能が維持でき、更に、取り扱い性に優れ、生産性にも優れたアルカリ水電解用隔膜を提供すること。【解決手段】多孔性支持体と多孔質層とを有するアルカリ水電解用隔膜であり、前記多孔質層は、前記アルカリ水電解用隔膜の少なくとも一方の表面を構成する層であり、前記多孔質層は有機ポリマーおよび親水性無機粒子を含み、前記有機ポリマーの量が、前記親水性無機粒子の総量に対して8質量%以下であることを特徴とする、アルカリ水電解用隔膜とする。【選択図】なし
Resumen de: WO2025101433A1
A syngas generation system includes a molten carbonate fuel cell (MCFC) including a MCFC cathode configured to receive a MCFC cathode input stream including a flue gas stream and a MCFC anode configured to output a MCFC anode exhaust stream including carbon dioxide and steam. The syngas generation system further includes a solid oxide electrolysis cell (SOEC) including an SOEC cathode and an SOEC anode. The SOEC is configured to receive, at the SOEC cathode, an SOEC cathode input stream, the SOEC cathode input stream including at least a portion of the MCFC anode exhaust stream, co-electrolyze carbon dioxide and steam in the SOEC cathode input stream, and output, from the SOEC cathode, an SOEC cathode exhaust stream including carbon monoxide and hydrogen gas.
Resumen de: EP4553195A1
This control device for a hydrogen production apparatus is intended to be used for a hydrogen production apparatus including an electrolyzer for electrolyzing water and a rectifier for supplying a direct-current electric power to the electrolyzer, the control device being provided with: a voltage control unit which is configured so as to adjust an output voltage output from the rectifier to the electrolyzer in such a manner that the output voltage of the rectifier is coincident with a set voltage; and a voltage set unit which is configured so as to set the set voltage to a first voltage that is larger than a rated voltage for the electrolyzer in at least a portion of the period during the start-up of the hydrogen production apparatus.
Resumen de: CN119403757A
The invention relates to a method for cracking ammonia gas, comprising:-feeding a first portion of the ammonia gas into a burner (14) arranged in a cracking vessel (12); -feeding an oxygen-containing gas into the burner (14); -combusting a first portion of the ammonia gas, forming a combustion zone (101) in the cracking vessel (12), generating heat; feeding a second portion of the ammonia gas into a cracking zone (102) of the cracking vessel (12) outside the combustion zone (101); and-cracking the second portion of the ammonia gas with heat generated by combustion of the first portion of the ammonia gas and generating a product gas comprising hydrogen and nitrogen from the second portion of the ammonia gas. The invention also relates to a cracking device (10) for cracking ammonia gas.
Resumen de: WO2024010614A1
The objective of the present invention is to take advantage of new and improved processes and catalysts that can facilitate the efficient, direct CO2 conversion (CO2C) reaction to e-methane at temperatures less than about 350°C in one step.
Resumen de: CN119497766A
The method 5 of operation of an electrolysis system with periodic polarity reversal in order to activate and/or regenerate electrodes (4, 5) in an electrolysis system (1), the polarity between the electrodes (4, 5) is periodically reversed, which results in the production of hydrogen gas in the oxygen gas in the anode chamber (2). In order to prevent the occurrence of explosive gas mixtures in the system, the duration of the activation and/or regeneration period 10 is limited to less than 2% of the duration of the normal production period.
Resumen de: AU2023303893A1
An estimation system for estimating current efficiency of an electrolyser comprises a data processing system (105) for computing heat loss of the electrolyser based on specific heat capacity of electrolyte, a flow rate of the electrolyte in a cathode side of the electrolyser, a flow rate of the electrolyte in an anode side, a temperature difference (T1c - T0c) between electrolyte circulation outlet and inlet of the cathode side, and a temperature difference (T1a - T0a) between electrolyte circulation outlet and inlet of the anode side. The current efficiency is estimated based on a difference between electric power supplied to the electrolyser and the computed estimate of the heat loss, and on a product of thermoneutral voltage of electrolysis cells of the electrolyser and electric current supplied to the electrolyser.
Resumen de: KR20250066721A
본 발명의 물분해 전기 촉매 전극은 카본 페이퍼를 포함하는 기재; 및 상기 기재 상에 형성되며, 셀레늄 도핑 계층적 니켈-코발트 하이브리드 구조체를 포함할 수 있다.
Resumen de: CN119547229A
The invention relates to a bipolar plate (100) for a chemical energy converter (200, 300). The bipolar plate (100) comprises:-a plurality of channels (101) for conducting an operating medium of the energy converter (200, 300),-a plurality of supply openings (103) for supplying the plurality of channels (101) with an operating medium,-a plurality of distribution channels (105) for distributing the operating medium onto the plurality of channels (101), each distribution channel (105) of the plurality of distribution channels (105) extends between a corresponding supply opening (103) of the plurality of supply openings (103) and a corresponding channel (101) of the plurality of channels (101), and wherein the distribution channels (105) of the plurality of distribution channels (105) extend between the corresponding supply opening (103) of the plurality of supply openings (103) and the corresponding channel (101) of the plurality of channels (101). Each supply opening (103) of the plurality of supply openings (103) has an at least partially curved edge region at least on a distribution channel side facing a corresponding distribution channel (105) of the plurality of distribution channels (105).
Resumen de: MX2023013142A
Single crystalline nanoparticles that are tantalum nitride doped with at least one metal are described. The single crystalline nanoparticles can be doped with two metals such as Zr and Mg. The single crystalline nanoparticles can be TasNsMg+Zr, or TasNsMg, or TasNs:Zr or any combination thereof. Catalyst containing the single crystalline nanoparticles alone or with one or more co-catalyst are further described along with methods of making the nanoparticles and catalyst. Methods to split water utilizing the catalyst are further described.
Resumen de: EP4553037A1
The invention concerns a method for producing hydrogen by continuous-flow photocatalytic water splitting allowing higher water concentration to be attained in the reaction volume and therefore higher rates of reaction in comparison with the prior art. The invention also concerns an associated apparatus.
Resumen de: EP4553193A1
The present disclosure relates generally to integrated processes for producing H<sub>2</sub> and CO from carbon dioxide and water through electrolysis, in particular using an electrolyzer cell. In particular, the disclosure relates to a process comprising: providing a electrolysis feed stream comprising carbon dioxide; electrolyzing carbon dioxide of the electrolysis stream in an electrolyzer cell to form carbon monoxide; electrolyzing water to form hydrogen gas; providing a H<sub>2</sub>/CO stream comprising at least a portion of the carbon monoxide from the electrolysis of carbon dioxide and at least a portion of the hydrogen gas from the electrolysis of water to a Fischer-Tropsch reactor.
Resumen de: EP4553191A1
Die vorliegende Erfindung betrifft ein pulverförmiges Katalysatormaterial, das sich insbesondere für die Sauerstoffentwicklungsreaktion bei der Wasserelektrolyse eignet. Das Katalysatormaterial umfasst ein ungeträgertes Ruthenium-Iridium-Oxid, wobei das Verhältnis der Gewichtsanteile von Iridium (Ir) zu Ruthenium (Ru) bezogen auf das Gesamtgewicht des ungeträgerten Ruthenium-Iridium-Oxids nicht größer als 4,5 ist. Das ungeträgerte Ruthenium-Iridium-Oxid weist eine Pulverleitfähigkeit von mindestens 30 S/cm auf. Die Erfindung betrifft außerdem ein Verfahren zur Herstellung eines solchen pulverförmigen Katalysatormaterials, eine Zusammensetzung, eine Katalysatorschicht, eine Elektrode und eine elektrochemische Vorrichtung enthaltend das pulverförmige Katalysatormaterial, sowie ein Verfahren zur Herstellung von Wasserstoff unter Verwendung des pulverförmigen Katalysatormaterials.
Nº publicación: EP4551739A1 14/05/2025
Solicitante:
UOP LLC [US]
UOP LLC
Resumen de: AU2023333919A1
A porous ion-permeable separator membrane with an asymmetric pore structure in which the top of the membrane (the side opposite the porous substrate) has smaller pores than the pores in the rest of the polymer coating (i.e., closer to the porous substrate) is described. The porous ion-permeable asymmetric composite membrane comprises polymers, inorganic particles, and a porous substrate which is stable at a pH of 8 or higher.