Resumen de: WO2025131721A1
The invention relates to a method for producing an electrolysis assembly comprising at least one housing with an interior, and with at least one stack assembly disposed in the interior of the housing, the stack assembly comprising a plurality of electrolytic cells stacked in a stacking direction, at least some of the electrolytic cells each comprising a membrane electrode assembly and an interconnector, and the membrane electrode assembly and the interconnector each having an oxygen side and a hydrogen side, wherein, in a preparation step for producing membrane electrode assemblies, at least one pasty layer is applied to each of the two surfaces of an electrolyte membrane, at least one of the layers on one surface being used to form a first electrode formed on the hydrogen side of the membrane electrode assemblies and at least one of the layers on the other surface being used to form a second electrode formed on the oxygen side of the membrane electrode assemblies, in a preparation step a seal material comprising glass and/or glass-ceramic is applied to the interconnectors, in an assembling step the prepared interconnectors and membrane electrode assemblies are stacked in alternation to form a stack, and in an assembling step the stack is joined under the action of thermal energy and of a mechanical clamping force which is applied to the stack inwardly in the stacking direction.
Resumen de: AU2023284373A1
The present invention relates to the technical field of hydrogen energy power generation, and provided is a hydrogen energy uninterruptible power system. Said system comprises a hydrogen production unit, a power storage unit, a power generation apparatus, and a control unit, wherein the hydrogen production unit is able to utilize electrolysis to prepare hydrogen and oxygen gases; the power storage unit can supply power to the hydrogen production unit, and can output power to the outside; the power generation apparatus can receive the hydrogen and oxygen gases output by the hydrogen production unit and generate power, and the power generation apparatus can output power to the outside or transfer power to the power storage unit; and the control unit communicates with the hydrogen production unit, the power storage unit, and the power generation apparatus by means of electrical signals.
Resumen de: WO2025131585A1
The invention relates to a hydrogen production facility (222) comprising a hydrogen recirculation assembly (100, 200). The hydrogen production facility (222) comprises at least one main compressor (226, 426) which is fluidically connected to at least one electrolyzer (224, 424) via a main hydrogen flow fluid network (232), wherein the hydrogen recirculation assembly (100, 200) comprises a first fluid inlet (102, 202) which can be connected to a first hydrogen leakage point (240) of the hydrogen production facility (222) and which is connected to at least one collecting container (106, 206) of the hydrogen recirculation assembly (100, 200) via at least one first fluid connection (110, 210); a second fluid inlet (104, 204) which can be connected to a second hydrogen leakage point (242) of the hydrogen production facility (222) and which is connected to the collecting container (106, 206) via at least one second fluid connection (112, 212); at least one recirculation compressor (108, 208) which is connected to the collecting container (106, 206) via at least one third fluid connection (114), and at least one first fluid outlet (118, 218) which can be connected to a main hydrogen flow fluid network (232) of the hydrogen production facility (222) and which is connected to the recirculation compressor (108, 208) via at least one fourth fluid connection (116).
Resumen de: WO2025131681A1
The invention relates to an electrolysis assembly comprising a stack assembly. At least some of the interconnectors are designed in the form of substantially rectangular single-layer sheet-metal structures, the first face of which defines the hydrogen side of the interconnector and the second face of which defines the oxygen side of the interconnector, wherein the thickness of the interconnectors in the form of sheet-metal structures ranges from 0.3 to 0.8 mm, and at least some of the interconnectors have a reactant gas manifold opening in a first edge region in order to conduct reactant gas and a product gas manifold opening in a second edge region lying opposite the first edge region in order to conduct product gas. Between the membrane electrode assembly and the interconnector of at least some of the electrolysis cells is a reactant gas line structure designed to conduct reactant gas out of the reactant gas manifold structure along the hydrogen side of the membrane electrode assemblies and to the product gas manifold structure, and the reactant gas line structure has a plurality of flow channels, each of which is laterally delimited by means of two mutually spaced channel webs, at least some of the channel webs having, on average, an edge steepness of >= 85° at at least one surface which delimits a flow channel.
Resumen de: WO2025131626A1
The invention relates to an electrolysis assembly (10) comprising a stack assembly (16). The stack assembly (16) is equipped with precisely one reactant gas manifold structure (66) in order to provide reactant gas to the electrolysis cells (18) and precisely one product gas manifold structure (68) in order to discharge product gas from the electrolysis cells (18). The stack assembly (16) has a reactant gas opening for introducing reactant gas into the reactant gas manifold structure (66) and a product gas opening for discharging product gas out of the product gas manifold structure (68). The reactant gas manifold structure (66) and the product gas manifold structure (68) are formed within the stack assembly (16), in each case by means of manifold openings introduced into the interconnectors, wherein between the membrane electrode assembly and the interconnector of at least some of the electrolysis cells is a reactant gas line structure designed to conduct reactant gas out of the reactant gas manifold structure along the hydrogen side of the membrane electrode assemblies and to the product gas manifold structure, and at least some of the membrane electrode assemblies have an oxygen-permeable structure on the oxygen side, said oxygen-permeable structure being positioned and designed such that oxygen released on the oxygen side of the membrane electrode assembly can be discharged into the interior of the housing (12).
Resumen de: WO2025129214A1
The invention relates to an electrolyser for alkaline hydrogen electrolysis, comprising: a direct voltage source, in particular a rectifier (1) having an electrical positive pole (2) and an electrical negative pole (3); media inlet lines (4) for an electrolysis medium; and media outlet lines (5) for product media; wherein a plurality of electrolysis blocks (6) which are connected in series via electrical connecting lines (9) are connected between the positive pole (2) and the negative pole (3), wherein the electrolysis blocks (6) each have a number of electrolysis cells (7) which are electrically connected in series and are mechanically clamped so that they are flush with one another, wherein the media inlet lines (4) and the media outlet lines (5) each extend serially through the electrolysis blocks (6) and are distributed within each individual electrolysis block (6) to individual cell inlet lines (4', 4") and individual cell outlet lines (5', 5") of the electrolysis cells (7).
Resumen de: WO2025133594A1
An energy system (100) for supplying electricity to a load (108) and a method of using said system are provided, the system comprising renewable electricity generation capacity (102) comprising solar and wind generation capacity, a battery (110) with a maximum electricity storage capacity sufficient to meet the mean load for up to 1 hr, an electrolyser (112) configured for hydrogen gas production and capable of operating at from 0.3 to 0.8 times the maximum output of the renewable electricity generation capacity; and gas storage (114) configured to receive the hydrogen gas; wherein the renewable electricity generation capacity is in electrical communication with the electrolyser via the battery and wherein the system is configured to allow electrical communication to the load such that electrical output not consumed by the load is used to generate hydrogen gas.
Resumen de: WO2025132918A1
Disclosed is an electrolysis cell element (1) comprising, a support structure (2) comprising an inner aperture (3), and a bipolar plate (4) being suspended in the inner aperture (3). The support structure (2) comprises a structure core (5) and a coating (6), wherein the coating (6) includes a thermoplastic material at least partly enclosing the structure core (5) and wherein the bipolar plate (4) is suspended in the inner aperture (3) by means of the coating (6). An electrolysis cell stack (10) and use of an electrolysis cell stack (10) is also disclosed.
Resumen de: WO2025132855A1
A separator for alkaline water electrolysis comprising: - a porous support (100) and on at least one side of the support, in order: - an optional porous layer including a Polymer A (200), and - a non-porous layer including a Polymer B (300), characterized in that the separator is obtainable by coating on the porous support (100) or the optional porous layer (200) a Polymer B solution having a viscosity of at least 400 mPa.s, measured at 20°C and a shear rate of 100 s-1, and wherein the separator has a Bubble Point, measured according to ASTM F316, of at least 5 bar.
Resumen de: WO2025132806A1
A catalyst coated separator for alkaline water electrolysis (1) comprising a porous support (100) and on at least side of the support, in order: - an optional porous polymer layer (200), - a non-porous alkali-stable polymer layer (300), and - a catalyst layer (400).
Resumen de: WO2025132521A1
The present invention refers to an electrochemical system comprising: i. an electrolyte, preferably a liquid electrolyte, more preferably an aqueous electrolyte, comprising a stabilizing anion, wherein said electrolyte comprises > 10 mol/mol % of water; ii. a redox mediator electrode comprising Ga(0) or alloys thereof; iii. a cathode; iv. an anode; and v. a wavefunction generator to alternately polarize the electrical connection between the redox mediator electrode and the cathode or anode; wherein the redox mediator electrode is electrically connected with the cathode and the anode, provided that the anode and the cathode are not electrically connected with each other. The gallium-based redox mediator electrode permits the nearly complete reversibility between dissolution and electroplating of gallium, thus cathodic and anodic reactions can be carried out in an alternating manner by electrically connecting the redox mediator electrode with the cathode or the anode. The present invention also refers to a method for the electrochemical production of H2, and oxidized species, such as O2 and/or Cl2 or H+, with the electrochemical system of the invention. Therefore, the present invention may find application in fuel production, e.g. in combination with fuel cells or internal combustion engines, or in chemical reactions such as hydrogenation reactions, reversible H2 production and H2 oxidation, hydrotreating reactions, hydrocracking reactions, hydroisomerisation reactions, oil
Resumen de: WO2025131283A1
The invention relates to a method, a system and the use thereof. According to the invention, hydrogen and oxygen are generated by means of a water-borne platform and, for example, the hydrogen and oxygen so produced are transported ashore and compressed and/or further compressed there.
Resumen de: WO2025132418A1
The invention relates to a water electrolysis installation (P) comprising a plurality of electrolysis clusters (Ci) operated at respective electrical power setpoints (Pi k). The installation comprises and a supervision unit (SU) for operating the installation (P) according to an electrical network flexibility signal (FSk), the supervision unit (SU) comprising a modulation controller (MOD) for modulating synchronously the electrical power drawn by the installation (P) from an electrical network (NET) according to a preset arrangement, a priority sequencer (SEQ) to establish the preset arrangement asynchronously to the modulation controller (MOD), and a regulator module (REG) to regulate the actual power (Pk) drawn by the installation.
Resumen de: WO2025132365A1
The invention relates to a device/method for capturing/converting CO2, comprising/using a CO2 capturing unit (2), a water electrolysis unit (5), an RWGS unit (8), an FT unit (13), a unit for converting by-products into syngas (28) and a hydrogen unit (20), in which a carbon dioxide separation unit (34) is arranged to: treat a first syngas (12) and a second syngas (29); produce a gaseous effluent depleted in carbon dioxide (18) and a gaseous effluent rich in carbon dioxide (35); and recycling the gaseous effluent rich in carbon dioxide (35) to the inlet of the RWGS section (8).
Resumen de: WO2025131874A1
The invention relates to a system (120) consisting of at least two catalyzers (100), in particular for use in electrochemical cell devices (10), preferably fuel cell devices (10), wherein the at least two catalyzers (100) are fluidically connected in series, and each of the at least two catalyzers (100) has a catalytically active material (108), each of which is provided on a main part (102). At least one first catalyzer (100a), which is arranged first in the flow direction, has a protective material (110), which is designed to bind chromium and is provided on the main part (102). According to the invention, the first catalyzer (100a) is designed to oxidize hydrogen, and a second catalyzer (100b), which is arranged after the first catalyzer (100a) in the flow direction, is designed to oxidize methane.
Resumen de: CN119403758A
A process for dissociating ammonia into a dissociated hydrogen/nitrogen stream in a catalyst tube within a radiant tube furnace and an adiabatic or isothermal unit containing a catalyst, and a downstream purification process unit for purifying the dissociated hydrogen/nitrogen stream into a high purity hydrogen product.
Resumen de: JP2025095274A
【課題】予備処理を行わなくてもアルカリ水電解時の耐久性(耐金属溶出性)を確保することが可能なアルカリ水電解装置用部材を与える省Ni型のアルカリ水電解装置用ステンレス鋼材を提供する。【解決手段】質量基準で、C:0.100%以下、Si:1.00%以下、Mn:3.00~12.00%、Ni:7.00~9.00%、P:0.0030%以下、S:0.0030%以下、Cr:10.0~18.0%、N:0.01~0.25%、Cu:0.01~1.00%、Mo:0.01~1.00%、Al:0.005~0.080%、B:0.0001~0.0100%、Ca:0.0005~0.0100%、O:0.0100%以下を含み、残部がFe及び不純物からなるアルカリ水電解装置用ステンレス鋼材とする。【選択図】なし
Resumen de: WO2025135743A1
The present invention provides a water electrolysis stack assembly and a hot box apparatus. In an embodiment, provided is a water electrolysis stack assembly including: a case including an upper surface part, a side surface part, and a gas outflow pipe formed in the side surface part; and a stack accommodated in an inner space of the case, wherein a surface pressure is applied to the stack by the upper surface part of the case.
Resumen de: WO2025135328A1
The present invention relates to a water electrolysis system comprising: a hydrogen (H2) removal device; and an oxygen (O2) removal device, wherein the hydrogen (H2) removal device removes, from an oxygen (O2) stream, hydrogen (H2), and the oxygen (O2) removal device removes, from a hydrogen (H2) stream, oxygen (O2). By removing hydrogen (H2) and oxygen (O2) from the respective gas streams, the likelihood of explosion accidents during the movement of the gas streams is remarkably reduced, and the purity requirements of various industrial gases can be satisfied without a separate purification process.
Resumen de: WO2025135348A1
The present disclosure relates to a method for preparing a catalyst for an oxygen evolution reaction in a water electrolysis cell, and a water electrolysis cell membrane-electrode assembly and a water electrolysis cell, which comprise the catalyst prepared using same, and the method for preparing a catalyst for an oxygen evolution reaction in a water electrolysis cell comprises preparing a plurality of noble metal oxide seeds, and preparing a noble metal oxide aggregate by using the plurality of noble metal oxide seeds, thereby increasing the surface area thereof by means of pores between noble metal oxide particles, and thus performance and durability can be improved.
Resumen de: WO2025137083A1
An electrolyzer for gaseous production such as hydrogen gas includes an oscillating electrode driven at a natural frequency of the gaseous bubbles improves output by readily removing the gaseous bubble product from the electrode surface, thereby exposing greater electrode surface area for subsequent electrolysis reactions. A natural frequency of the gaseous product determines an oscillation frequency with which to drive the electrode accumulating the gaseous product, such as hydrogen bubbles, to agitate and release the bubbles which then rise to the surface of the liquid filled containment. Integrating oscillation logic for agitating the otherwise stationary electrode or cathode in a PEM water electrolyzer improves hydrogen production by readily evacuating the generated hydrogen to free up the electrode area for additional electrolysis reactions.
Resumen de: WO2025135726A1
The present invention provides a hydrogen vent system for discharging hydrogen generated in a high-temperature water electrolysis stack to the outside, comprising: a first pipe unit connected to the high-temperature water electrolysis stack and having a curved portion; a drain line which is connected to the first pipe unit and through which condensed water is drained; and a discharge unit which is connected to the first pipe unit and which releases hydrogen upward into the air, wherein a surge tank that maintains pressure and moves the condensed water to the drain line is disposed in the first pipe unit.
Resumen de: WO2025135565A1
The present invention relates to a composite water electrolysis system using nuclear power plant heat and electrical energy, and, to a composite water electrolysis system for receiving heat energy and electrical energy generated in each of a plurality of SMRs, the system comprising: a heat energy storage hub for storing the heat energy generated in each of the plurality of SMRs; an electrical energy storage hub for storing electrical energy generated in each of the plurality of SMRs; and a composite hydrogen production unit, which receives heat and electricity from the heat energy storage hub and the electrical energy storage hub so as to generate hydrogen and oxygen. According to one embodiment, technologies such as hydrogen production through high-temperature water electrolysis, low-temperature water electrolysis, and ammonia decomposition are diversified, hydrogen and oxygen produced through high-temperature water electrolysis are in a high-temperature state, and the waste heat energy discarded when hydrogen and oxygen are cooled to a low temperature in order to be stored can be used as an additional heat source of low-temperature water electrolysis and ammonia hydrogen decomposition devices.
Resumen de: WO2025135512A1
The present disclosure relates to: a catalyst for an oxygen evolution reaction of a water electrolysis cell; a method for manufacturing same; and a membrane-electrode assembly for a water electrolysis cell, and a water electrolysis cell, comprising same. More specifically, by manufacturing a catalyst for oxygen evolution reaction of a water electrolysis cell, having a structure in which active particles fill pores between nanoparticles of a carrier assembly manufactured in various forms or penetrate into the carrier assembly while being supported by the carrier assembly, performance is improved while reducing the amount of noble metal used. The active particles have stronger bonds than a form in which active particles are simply supported, and thus the active particles and the carrier assembly can have improved durability.
Nº publicación: WO2025135513A1 26/06/2025
Solicitante:
KOLON INC [KR]
\uCF54\uC624\uB871\uC778\uB354\uC2A4\uD2B8\uB9AC \uC8FC\uC2DD\uD68C\uC0AC
Resumen de: WO2025135513A1
The present disclosure relates to a catalyst for an oxygen evolution reaction of a water electrolysis cell, a manufacturing method therefor, a membrane-electrode assembly for a water electrolysis cell including same, and a water electrolysis cell. The catalyst for the oxygen evolution reaction of a water electrolysis cell includes a heterogeneous noble metal composite which has a nanowire shape and includes different first and second noble metal oxides in a node structure, whereby the catalyst can reduce the amount of the noble metals used while improving performance and can enhance performance and durability depending on the types and lengths of the noble metals forming the heterogeneous noble metal composite.