Resumen de: WO2025135726A1
The present invention provides a hydrogen vent system for discharging hydrogen generated in a high-temperature water electrolysis stack to the outside, comprising: a first pipe unit connected to the high-temperature water electrolysis stack and having a curved portion; a drain line which is connected to the first pipe unit and through which condensed water is drained; and a discharge unit which is connected to the first pipe unit and which releases hydrogen upward into the air, wherein a surge tank that maintains pressure and moves the condensed water to the drain line is disposed in the first pipe unit.
Resumen de: WO2025127502A1
Provided according to exemplary embodiments of the present invention is an ammonia decomposition system capable of minimizing the generation of iron nitride, which is a by-product.
Resumen de: US2025197205A1
Disclosed is an apparatus for producing hydrogen gas from ammonia gas using a laser. A decomposition device for decomposing ammonia gas in order to produce hydrogen gas includes an ammonia inlet provided at an uppermost end of the decomposition device to allow ammonia gas to easily flow into the decomposition device, a hydrogen outlet configured to discharge the hydrogen gas produced by decomposition of the ammonia gas, and a nitrogen outlet configured to discharge nitrogen gas produced by the decomposition of the ammonia gas. Laser light in a preset first wavelength band is incident from an outside to a contact point of the ammonia inlet, the hydrogen outlet, and the nitrogen outlet, so that the ammonia gas is decomposed.
Resumen de: EP4576478A1
The invention relates to a water electrolysis installation (P) comprising a plurality of electrolysis clusters (Ci) operated at respective electrical power setpoints (P<sup>i</sup><sub>k</sub>). The installation comprises and a supervision unit (SU) for operating the installation (P) according to an electrical network flexibility signal (FS<sub>k</sub>), the supervision unit (SU) comprising a modulation controller (MOD) for modulating synchronously the electrical power drawn by the installation (P) from an electrical network (NET) according to a preset arrangement, a priority sequencer (SEQ) to establish the preset arrangement asynchronously to the modulation controller (MOD), and a regulator module (REG) to regulate the actual power (P<sub>k</sub>) drawn by the installation.
Resumen de: WO2025127755A1
A hydrogen production apparatus of the present invention comprises: an ammonia decomposition reactor for decomposing ammonia to discharge a mixed gas including hydrogen, nitrogen, and unreacted ammonia; an ammonia remover for receiving the mixed gas, adsorbing and removing the unreacted ammonia included in the mixed gas, and discharging a first product gas including hydrogen and nitrogen and a first tail gas; and a nitrogen remover for receiving the first product gas, removing nitrogen included in the first product gas, and discharging a second product gas including hydrogen and a second tail gas, wherein the second product gas discharged from the nitrogen remover is resupplied to the nitrogen remover as a purge gas and a pressurizing gas. According to the hydrogen production apparatus of the present invention, high-purity hydrogen can be continuously produced in large quantities.
Resumen de: KR20250092336A
본 발명에 의하면, 수저해 시스템; 및 상기 수전해 시스템을 원자력 발전 시스템과 연계시키는 중간 열교환 시스템을 포함하며, 상기 수전해 시스템은, 저온 수전해 방식으로 전해수를 수소와 산소로 전기분해하여 수소를 생성하고 상기 원자력 발전 시스템으로부터 상기 전기분해에 필요한 전력을 공급받는 수전해기와, 상기 수전해기로부터 생성된 수소가스를 냉수와 열교환시켜서 냉각하는 수소가스 냉각기를 구비하며, 상기 전해수는 상기 수전해기에 순환 공급되며, 상기 중간 열교환 시스템은 전해수 열교환기와, 흡수식 냉동기와, 냉동기 열교환기를 구비하며, 상기 전해수 열교환기는 상기 전해수를 상기 원자력 발전 시스템에 구비되는 증기 발생기로 공급되는 급수와 열교환시켜서 상기 전해수를 냉각하고 상기 급수를 가열하며, 상기 냉수가 상기 흡수식 냉동기의 냉동기 냉수로서 상기 흡수식 냉동기와 상기 수소가스 냉동기 사이를 순환하고, 냉동기 온수가 상기 흡수식 냉동기와 상기 냉동기 열교환기 사이를 순환하며, 상기 냉동기 열교환기는 상기 냉동기 온수를 상기 원자력 발전 시스템에 구비되는 증기 발생기로 공급되는 급수와 열교환시켜서 상기 급수를 가열하는 원자력 발전 연계형 수소 생산 설비가 제공
Resumen de: KR20250092308A
본 발명에 의하면, 메탄을 포함하는 메탄 원료가스에 대한 자열 개질 반응을 수행하여 수소를 포함하는 개질가스를 생산하는 자열 개질 반응기; 및 상기 자열 개질 반응기로 상기 자열 개질 반응에 필요한 산소를 공급하는 산소 공급부를 포함하며, 상기 산소 공급부는 물을 수소와 산소로 전기분해하는 수전해기에서 생성된 부생산소를 상기 자열 개질 반응기에 공급하는 부생산소 공급 시설을 구비하는 자열 개질 수소 생산 설비가 제공된다.
Resumen de: DE102023213299A1
Die Erfindung betrifft ein Verfahren zum Rückführen von Kathodenmedium (7) in einem Elektrolyseuraggregat (1), insbesondere einem PEM- oder AEM-Elektrolyseuraggregat (1), wobei zeitlich vor einem Wiedereinspeisen des einen Elektrolysezellenstapel (10) des Elektrolyseuraggregats (1) verlassenden Kathodenmediums (7) in ein Mediumreservoir (23) einer Mediumversorgung (20) des Elektrolyseuraggregats (1), ein im Kathodenmedium (7) vorliegender Wasserstoff (8) abgetrennt wird, und ferner zeitlich vor dem Wiedereinspeisen des Kathodenmediums (7) in das Mediumreservoir (23), in einem Verdünnschritt (V) des Rückführverfahrens dem Kathodenmedium (7) frisches Versorgungsmedium (3) zugeführt und derart eine Konzentration von Wasserstoff (8) im Kathodenmedium (7) verringert wird.
Resumen de: WO2025041808A1
Provided is an electrode exhibiting high oxygen generating electrode catalytic activity as compared with conventional electrodes using manganese-based oxide as an oxygen generating electrode catalyst.
Resumen de: WO2025126639A1
Provided is a method for producing a hydrogen gas, which enables the production of a hydrogen gas with high energy efficiency. This method for producing a hydrogen gas includes: placing water between electrodes; and allowing pulsed discharge to occur between the electrodes to decompose water molecules, thereby generating the hydrogen gas. In the method, the frequency for the pulsed discharge is 190-196 kHz or a double vibration frequency thereof.
Resumen de: WO2024204928A1
A solid oxide cell stack includes a plurality of interconnects, a first solid oxide cell disposed between the plurality of interconnects and including a first fuel electrode, a first electrolyte, and a first air electrode, and a second solid oxide cell disposed to be adjacent to the first solid oxide cell in a lateral direction between the plurality of interconnects and including a second fuel electrode, a second electrolyte, and a second air electrode, wherein an operating temperature of the first solid oxide cell is higher than an operating temperature of the second solid oxide cell.
Resumen de: KR20250093044A
본 발명의 예시적인 실시예들에 따르면, 수소 생산 시스템이 제공된다. 상기 수소 생산 시스템은, 스팀 공급부로부터 제공받은 제1 스팀을 전기 분해하여 수소 및 산소를 포함하는 제1 가스를 제공하도록 구성된 제1 고체산화물 수전해 셀을 포함하는 제1 SOEC 부; 물을 포함하는 냉매를 이용하여 상기 제1 가스를 냉각하고, 제2 스팀과 상기 수소 및 산소를 포함하는 제2 가스를 제공하도록 구성된 열교환부; 및 상기 제2 스팀을 전기 분해하여 산소 및 수소를 포함하는 제3 가스를 제공하도록 구성된 제2 고체산화물 수전해 셀을 포함하는 제2 SOEC 부; 를 포함하고, 상기 제1 스팀은, 상기 제1 고체산화물 수전해 셀의 작동 온도와 같거나, 상기 제1 고체산화물 수전해 셀의 작동 온도보다 높은 온도로 상기 제1 고체산화물 수전해 셀에 공급된다.
Resumen de: WO2025127896A1
According to exemplary embodiments of the present invention, a hydrogen production system is provided. The hydrogen production system comprises: a dry quenching facility configured to cool coke using a cooling gas; a boiler configured to receive the cooling gas from the dry quenching facility and recover heat energy of the cooling gas to produce first steam and electric power; and a water electrolysis facility configured to receive the electric power from the boiler and electrolyze second steam to produce hydrogen. According to other exemplary embodiments of the present invention, a method for producing hydrogen is provided.
Resumen de: PL447183A1
Przedmiotem zgłoszenia jest wysokociśnieniowy elektrolizer alkaliczny wodoru i tlenu, będący urządzeniem, które jednocześnie wytwarza wodór i tlen na drodze procesu elektrolizy wody, po doprowadzeniu do anody i katody (elektrod) potencjału elektrycznego. Wysokociśnieniowy elektrolizer ma dwie niezależne od siebie pompy (12) umieszczone po jednej na dwóch przewodach zasilających elektrolitem alkalicznym, gdzie oba przewody zasilające połączone są po stronie tłocznej pomp (12) do dwóch stron hydro akumulatora (11), a w dalszym biegu przewodów zasilających jeden przewód podłączony jest do króćca zasilającego obiegu tlenowego (T), a drugi przewód do króćca zasilającego obiegu wodorowego (W) i w dalszym biegu przewód (W) połączony jest równolegle z obiegami omywającymi elektrolitem katody, a przewód (T) połączony jest równolegle z obiegami omywającymi anody pakietu elektrod katoda/anoda (2), gdzie sąsiadujące ze sobą obiegi katody i anody oddzielone są od siebie szczelnie membranami elektrolitycznymi (3).
Resumen de: WO2025127526A1
According to exemplary embodiments of the present invention, a hydrogen production system is provided. The present invention comprises: a hydrogen generation unit configured to receive reduced iron from a reduced iron generation unit configured to generate reduced iron by reducing powdered iron ore in a reducing gas atmosphere, and to generate hydrogen from ammonia by bringing the reduced iron into contact with the ammonia; and a regeneration unit configured to receive the reduced iron from the hydrogen generation unit and to regenerate the reduced iron by reducing the reduced iron in a hydrogen gas atmosphere. According to other exemplary embodiments of the present invention, a method for producing hydrogen is provided.
Resumen de: EP4574255A1
In a method of preparing an ammonia decomposition catalyst according to embodiments of the present disclosure, a mixture of a metal oxide including lanthanum and a heterogeneous metal and aluminum oxide is prepared, the mixture was subj ected to steam treatment to form a carrier, and an active metal is supported on the carrier to prepare an ammonia decomposition catalyst. The ammonia decomposition catalyst according to embodiments of the present disclosure is prepared by the above-described preparation method.
Resumen de: WO2024120594A1
A hydrogen generation system comprising a wind turbine installation including a wind energy generator (18) connected to a hydrogen electrolyser (30) by a power converter system (22) The power converter system (22) comprises a generator-side converter (24) and a electrolyser-side converter (26) which are coupled together electrically by a DC-link (28), and a converter controller (50) comprising a generator-side control module (50) coupled to the generator-side converter and a electrolyser-side control module (52) coupled to the electrolyser-side converter. The converter controller is configured to control the load torque on the wind energy generator and the electrical power fed to the electrolyser to implement a mechanical damping function associated with the wind turbine installation whilst maintaining a stable DC-link voltage. Beneficially, therefore, the wind turbine installation can implement active control of electromechanical damping systems whilst operating the electrolyser at an efficient operating point.
Resumen de: WO2025125439A1
A methanol plant and process for producing methanol are provided. A first SOE section is arranged to receive a carbon dioxide-rich feed and electrolyse it to a carbon monoxide-rich stream. A methanol loop is arranged to receive at least a portion of the carbon monoxide-rich stream and a hydrogen-rich stream and convert them to a crude methanol stream. A first H2O-rich stream is converted to a first steam stream by means of heat from the electrolysis process in the first SOE section. The first steam stream is used it as heat for the distillation of the crude methanol stream in the methanol distillation section.
Resumen de: US2025198012A1
The invention pertains to an electrolyser for producing hydrogen (H2) and oxygen (O2) as product gases. It includes an electrolysis module and a gas separator for phase separation of the product gas from water. The electrolysis module is connected to the gas separator via a product flow line, and a return line with a circulation pump connects the gas separator back to the electrolysis module for separated water. A bypass line with a valve allows water to be supplied from the gas separator to the electrolysis module during standstill. The invention also covers a method for operating the electrolyser, where in standstill mode, the electrolysis current is stopped, and a safety deactivation is initiated. Water is automatically driven into the electrolysis module due to a hydrostatic differential pressure (Δp) from a predefined height difference (Δh), flooding the electrolysis module.
Resumen de: WO2025125181A1
The invention relates to the synthesis of urea from ammonia and carbon dioxide, wherein the hydrogen required for ammonia synthesis is obtained both by steam reforming of feed natural gas (grey hydrogen) and by electrolysis of water using electricity from renewable energy sources (green hydrogen). As the proportion of green hydrogen increases, the amount of carbon dioxide formed in the synthesis gas during steam reforming is no longer sufficient for the synthesis of urea. Therefore, flue gas, which is formed during the combustion of a fuel gas composed of fuel natural gas and combustion air and which also contains carbon dioxide, is additionally used. The oxygen formed during the electrolysis of water is introduced into the flue gas, and the modified flue gas is fed to a secondary reformer; and/or the fuel natural gas is combusted together with combustion air and the oxygen formed during electrolysis. Excess nitrogen is preferably separated from the synthesis gas before it is used for the synthesis of ammonia.
Resumen de: WO2025125633A1
The present disclosure relates to apparatuses for producing hydrogen, and to top-down methods for producing nanoparticles. Different mechanical mills may be used to break down micron sized soil or sand particles and to react the particles with water, particularly sea water.
Resumen de: WO2025125180A1
The invention relates to the synthesis of urea from ammonia and carbon dioxide, wherein the hydrogen required for ammonia synthesis is obtained both by steam reforming of feed natural gas (grey hydrogen) and by electrolysis of water using electricity from renewable energy sources (green hydrogen). As the proportion of green hydrogen increases, the amount of carbon dioxide formed in the synthesis gas during steam reforming is no longer sufficient for the synthesis of urea. Therefore, flue gas, which is formed during the firing of the steam reformer and also contains carbon dioxide, is additionally used. After reducing the nitrogen content, the flue gas is fed into the reforming process. The carbon dioxide from the synthesis gas and the flue gas is combined, separated using conventional carbon dioxide scrubbing, and used for the synthesis of urea.
Resumen de: WO2025124791A1
The invention relates to an offshore electrolysis system (100) comprising a wind turbine (1) having a tower (19), which is anchored to the seabed, and having an electrolysis plant (5), wherein the electrolysis plant (5) is connected to the wind turbine (1) by a supply line (11), and wherein the electrolysis plant (5) has an electrolyser (13) which is arranged in a container (9), wherein the container (9) is arranged below sea level (25). The invention also relates to a method for operating a corresponding offshore electrolysis system. In this method, water is broken down into hydrogen (H2) and oxygen by an electrolyser (13) of the electrolysis plant (5), which electrolyser is located below sea level (25), wherein the hydrogen (H2) produced is transported away via a product gas line (7).
Resumen de: WO2025124766A1
The invention relates to an electrolytic cell (01) for the electrolysis of CO2, comprising a cathode side (02) and an anode side (03). The electrolytic cell (01) comprises a cathode plate (04), a gas chamber (06), a gas-diffusion layer (08), a catalyst layer (09), a water chamber (07) and an anode plate (05). The contacting of the catalyst layer (09) is optimized by using a plurality of current bridges (10). To this end, these current bridges (10) are electrically conductively connected to the cathode plate (04) and to the catalyst layer (09) while penetrating the gas-diffusion layer (08).
Nº publicación: WO2025128530A1 19/06/2025
Solicitante:
AIR LIQUIDE [FR]
AIR LIQUIDE AMERICAN [US]
L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE,
AMERICAN AIR LIQUIDE, INC
Resumen de: WO2025128530A1
A method for producing hydrogen using a feed stream comprising ammonia is provided. The method can include the steps of: cracking a gaseous ammonia feed in an ammonia cracker to produce a cracked gas stream comprising hydrogen, nitrogen, and unreacted ammonia; cooling the cracked gas stream to a first temperature that is sufficient for condensing at least a portion of the unreacted ammonia to form a dual phase fluid; separating the dual phase fluid in an ammonia separator to produce a liquid ammonia stream and a top gas stream comprised predominately of hydrogen and nitrogen; removing additional ammonia from the top gas stream using a front-end purification system to form a purified top gas stream; further cooling the purified top gas stream to a second temperature that is sufficient for condensing at least a portion of the nitrogen within the top gas stream to form a dual-phase stream, wherein the second temperature is colder than the first temperature; introducing the dual-phase stream to a cryogenic hydrogen separator under conditions effective for separating hydrogen and nitrogen, thereby creating a liquid nitrogen stream and a hydrogen top gas; warming and vaporizing the liquid nitrogen stream to produce a gaseous nitrogen stream; warming the hydrogen top gas to produce a gaseous hydrogen product stream: and recycling the liquid ammonia stream produced by the ammonia separator to a point upstream the ammonia cracker.