Resumen de: US2025256530A1
The task is to provide an active stylus pen that can write on a written object, such as paper, like a ballpoint pen or a mechanical pencil.An active stylus pen transmitting a signal to a chip provided at a tip of a refill of a ballpoint pen.
Resumen de: US2025257079A1
According to one aspect of the invention, a hole-transporting ink composition for a light emitting device, the hole-transporting ink composition includes an adhesion-promoting compound represented by Formula 1 and a hole-transporting compound:A1-B1—C1 Formula 1wherein, in Formula 1, the variables are defined above.
Resumen de: US2025257263A1
A semiconductor nanoparticle, a method of producing the semiconductor nanoparticle, and an electronic device including the semiconductor nanoparticle. The semiconductor nanoparticle includes silver, indium, gallium, and sulfur, with a molar ratio of gallium to indium (Ga/In) of greater than or equal to about 0.8:1 and less than or equal to about 20:1. The semiconductor nanoparticle is substantially free of copper and is configured to emit red light. The emission peak wavelength of the red light is greater than or equal to about 600 nm and less than or equal to about 650 nm, with a full width at half maximum (FWHM) of greater than or equal to about 5 nm and less than or equal to about 90 nm.
Resumen de: US2022056292A1
An ink composition that contains light-emitting nanocrystalline particles, a photopolymerizable component containing at least one photopolymerizable compound and having a Hansen solubility parameter δp of 3.0 MPa0.5 or more, and a phosphite compound with a partial structure represented by the following formula (1).In the formula (1), X1 to X3 independently denote an oxygen atom or a sulfur atom, R1 denotes an alkyl group, and * denotes a bonding arm.
Resumen de: US2025248298A1
Embodiments provide an ink composition, a light-emitting element produced from the ink composition, and a method for manufacturing the light-emitting element. The ink composition includes a metal oxide and an additive, wherein the ink composition has a viscosity in a range of about 7.5 cp to about 8.0 cp at a temperature of about 25° C. The additive is represented by Chemical Formula 1, which is explained in the specification.
Resumen de: US2025253341A1
A core-shell structured polymer, a conductive slurry, a secondary battery, and an electrical apparatus. The core-shell structured polymer comprises a core and a shell at least partially covering the core. The core contains a building block derived from a monomer represented by formula I and a building block derived from a monomer represented by formula II, and the shell contains the building block derived from the monomer represented by the formula I and a building block derived from a monomer represented by formula III, where R1, R2 and R3 are each independently selected from one or more of hydrogen, fluorine, chlorine, and fluorine-substituted C1-3 alkyl, and R4, R5, R6, R7, R8 and R9 are each independently selected from one or more of hydrogen, substituted or unsubstituted C1-5 alkyl.
Resumen de: US2025253337A1
The present invention pertains to a binder for Li-ion battery positive electrode, to a method of preparation of said electrode and to its use in a Li-ion battery. The invention also relates to the Li-ion batteries manufactured by incorporating said electrode.
Resumen de: US2025254793A1
A method for fabricating a printed gel-electronic circuit includes depositing a conductive material on a substrate, depositing first gel over the conductive material on the substrate, air-drying the first gel, depositing second gel over the air-dried gel, freezing a combination of the second gel, the air-dried gel, and the conductive material, and thawing the combination of the second gel, the air-dried gel, and the conductive material.
Resumen de: US2025255175A1
Embodiments provide a light emitting element, an ink composition, and a method of manufacturing a light emitting element using the ink composition. The light emitting element includes a first electrode, a second electrode disposed on the first electrode, an emission layer disposed between the first electrode and the second electrode, and a hole transport region disposed between the first electrode and the emission layer, wherein the hole transport region includes nanoparticles, and the nanoparticles each include a core represented by Formula 1, which is explained in the specification.Ni1-xMxO. Formula 1
Resumen de: US2025250454A1
The present invention discloses a MXene surface-modified with a metal alkoxide, which is formed by surface-modifying a MXene represented by the following Chemical Formula 1 with a metal alkoxide, in which the metal alkoxide is covalently bonded to the surface of the MXene and is present as a ligand.Mn+1 Xn Chemical Formula 1Here, M is one or more transition metal elements selected from the group consisting of Sc, Ti, V, Cr, Mn, Y, Zr, Nb, Mo, Hf, and Ta, X is at least one of carbon and nitrogen, and n is an integer from 1 to 4.
Resumen de: US2025250453A1
This present disclosure is directed to systems, devices, and methods of making printable copper and its alloy ink materials for materials such as printable electronics.
Resumen de: AU2024374498A1
A conductive slurry and a preparation method therefor, a composite electrode, and a flow battery. The conductive slurry is prepared from a conductive carbon black, carbon nanotubes, polyvinylidene fluoride and N-methylpyrrolidone. The composite electrode comprises a first electrode, a bipolar plate, a second electrode, and the conductive slurry as described above, wherein the conductive slurry is disposed between the first electrode and the bipolar plate and disposed between the second electrode and the bipolar plate. The conductive slurry is not only stable in the initial chemical state of a vanadium electrolyte of a common flow battery, but also has electrochemical stability during charging and discharging after a voltage is applied thereto. The conductive slurry has a long service life and does not degrade over time as the battery is used. The conductive slurry has a good bonding effect, and also enables the contact resistance to be reduced after the bipolar plate and carbon felt electrodes are compounded. Moreover, the conductive slurry itself has a good electrocatalytic activity, thereby providing reaction sites for a vanadium electrolyte commonly used in a flow battery and thus improving the efficiency and performance of the battery.
Resumen de: US2023245797A1
Provided is a conductive film that can be formed without using a vacuum deposition method and includes a material that is neither a noble metal nor a special carbon material as a conductive element for exhibiting conductivity. The conductive film provided includes an arrangement portion of semiconductor nanoparticles. When a cross section including the arrangement portion is observed, the semiconductor nanoparticles are arranged in line apart from each other in the arrangement portion. A conductivity C1 measured along at least one direction is 7 S/cm or more.
Resumen de: WO2025164748A1
Problem To provide a liquid composition excellent in thickener solubility and metal particle dispersion stability, in addition to being excellent in shape retention during wiring formation. Solution This liquid composition is characterized by containing metal particles, a dispersion medium, and cellulose having an alkyloxyhydroxypropyl group.
Resumen de: US2025250446A1
Nanoscale colorants are introduced to adjust the hue of transparent conductive films, such as to provide a whiter film. The transparent conductive films can have sparse metal conductive layers, which can be formed using silver nanowires. Color of the film can be evaluated using standard color parameters. In particular, values of color parameter b* can be reduced with the nanoscale colorants without unacceptably changing other parameters, such as haze, a* and transparency.
Resumen de: JP2025115847A
【課題】非導電性プライマー、不陸修正材、及び導電性プライマーの3工程を1工程で担うことができること、及び上塗り材との付着性に優れることにより導電性塗り床を省工程で形成でき、さらに導電性塗り床を耐衝撃性に優れるものとする導電性水系塗り床材組成物、導電性塗り床の施工方法、及び導電性塗り床を提供する。【解決手段】エポキシ樹脂と、アミンと、カーボンナノチューブと、水硬性セメントと、充填材と、骨材と、水と、を含み、エポキシ樹脂はビスフェノールF型エポキシ樹脂であり、アミンは変性脂肪族ポリアミンであり、カーボンナノチューブは組成物全体100重量部中0.0030~0.0065重量部であり、骨材は組成物全体100重量部中25~55重量部である、導電性水系塗り床材組成物。【選択図】なし
Resumen de: WO2025165538A1
Embodiments relate to a printable composite material and conductive structures formed from said material via printing and heating. The printable composite material may include at least one liquid metal, at least one conductive polymer, and at least one non-conductive polymer. The conductive structures may have an asymmetric configuration, such as a conductive first surface and an insulated second surface. The conductive structures may further be highly stretchable and have tissue-like mechanical properties.
Resumen de: EP4596641A1
Embodiments provide an ink composition, a light-emitting element produced from the ink composition, and a method for manufacturing the light-emitting element. The ink composition includes a metal oxide and an additive, wherein the ink composition has a viscosity in a range of about 7.5 cp to about 8.0 cp at a temperature of about 25 °C. The additive is represented by Chemical Formula 1, which is explained in the specification.
Resumen de: EP4597637A1
The present disclosure provides a carbon nanotube dispersion that contains a solvent and bundle-type carbon nanotubes formed from carbon nanotubes having an average diameter of 3 nm to 30 nm, a ratio of the number of bundle-type carbon nanotubes each in a shape having an outer diameter of 50 nm to 5 µm and a fiber length of 1 µm to 100 µm being 0.2% or more to the number of carbon nanotubes each having an outer diameter of 10 nm or more in the carbon nanotube dispersion as a reference.
Resumen de: EP4597270A1
The task is to provide an active stylus pen that can write on a written object, such as paper, like a ballpoint pen or a mechanical pencil.An active stylus pen transmitting a signal to a chip provided at a tip of a refill of a ballpoint pen.
Resumen de: WO2024068550A1
The invention relates to a composition for coating metal surfaces, comprising a binding agent which comprises a phenolic resin, an epoxy resin, in particular phenoxy resin, a polyester resin (soft resin) and a polyisocyanate, further comprising at least one conductive pigment, a corrosion resistant pigment and a solvent. The coating layer obtained from the composition by drying is corrosion-resistant, non-flammable, forming-compatible and weldable.
Resumen de: US2025243376A1
An ink composition, a production method thereof, a composite prepared therefrom, and devices including the same are provide. The ink composition includes an additive, a semiconductor nanoparticle, and a polymerizable monomer, the additive includes a phosphorus compound, the phosphorus compound contains a bond between phosphorus and oxygen, and the semiconductor nanoparticle includes a group Nov. 13, 2016 compound (or semiconductor nanocrystal) containing silver, group 13 metals (e.g., indium and gallium), and group 16 elements (e.g., sulfur).
Nº publicación: JP2025113190A 01/08/2025
Solicitante:
大日精化工業株式会社
Resumen de: WO2025158976A1
A carbon material dispersion according to the present invention contains: at least one type of carbon material from among single-walled carbon nanotubes and multi-walled carbon nanotubes; an aqueous medium; a dispersant; and a binder resin, and satisfies requirements (1), (2) and (3). (1) The amounts of the dispersant and the binder resin with respect to the carbon material are within respective prescribed ranges for each type of carbon material. (2) The surface resistivity of a dry film having a thickness of 1 μm and in which the content of the carbon material is 10 mass% is 1.0 × 103 Ω/sq or less. (3) A ratio (AL/AH) of an absorbance AL at a wavelength of 380 nm to an absorbance AH at a wavelength of 780 nm of a dilute dispersion obtained by diluting with a blank liquid so that the absorbance at a wavelength of 580 nm becomes 1.8 ± 0.02 is 1.45 or greater.