Resumen de: WO2025204074A1
Provided are an electrolysis module cooling method and an electrolysis system capable of reducing an atmospheric temperature inside a container. Provided is a cooling method for an electrolysis module (200) comprising: at least one electrolysis cartridge (220) that includes an electrolysis cell and generates hydrogen by electrolyzing water vapor generated from water supply; and a pressure vessel (210) that accommodates the electrolysis cartridge (220). In the method for cooling the electrolysis module (200), the air is subjected to heat exchange with water supply in order to heat the water supply, and the heat-exchanged air is supplied to the pressure vessel (210) to cool the inside of the pressure vessel (210).
Resumen de: WO2025202210A1
The invention relates to a modular assembly for a solid oxide electrolysis system for producing hydrogen. The assembly comprises at least one module (1) comprising at least one stack (2) of solid oxide plates positioned in a heat chamber (3), pipes for supplying fluids into the stack (2), pipes for discharging fluids from the stack (2), and at least one fluid-heating device allowing the fluid to reach a temperature that is compatible with the operation of the stack (2). The module (1) comprises a first removable part (10) provided with first connectors (4) for fluid pipes, which part comprises the stack (2) of solid oxide plates positioned in the heat chamber (3), and a second fixed part (11) provided with second connectors (5) capable of being connected to and disconnected from the first connectors (4). The second fixed part (11) comprises a distribution network (13) comprising the fluid supply pipes (14) and fluid discharge pipes (15).
Resumen de: WO2025205501A1
Provided are: a porous separator which is for alkaline water electrolysis and satisfies <Condition I> below; an alkaline water electrolysis member using the same; an alkaline water electrolysis cell; an alkaline water electrolysis device; and a hydrogen production method. <Condition I> The porous separator for alkaline water electrolysis has a thickness unevenness of 15% or less, obtained by immersing the separator in a 90°C 7 mol/L KOH aqueous solution and treating the separator under a pressurizing condition of 5 MPa for 60 minutes.
Resumen de: WO2025204109A1
The purpose of the present invention is to improve the energy efficiency of a hydrogen production system as a whole. A hydrogen production system (1) produces hydrogen. The hydrogen production system (1) is provided with: an SOEC (10) that is supplied with an oxidizing gas and steam and generates hydrogen by electrolyzing the supplied steam; a steam generation unit (20) that generates the steam supplied to the SOEC (10) by heating feed water; and a power supply device (40) that supplies power to the SOEC (10) so that the SOEC (10) operates at an operation point exceeding a thermal neutral point. The steam generation unit (20) uses heat generated in the SOEC (10) to heat the feed water, and generates the steam without using heat supplied from outside of the hydrogen production system (1).
Resumen de: WO2025203852A1
A cell stack according to the present invention is to be provided to a hydrogen production device and comprises: a layered body that includes a plurality of electrolysis cells; a first end plate and a second end plate that are provided on respective sides of the layered body; and a fastening mechanism that fastens the first end plate and the second end plate toward each other. The fastening mechanism has an elastic member that presses the first end plate toward the second end plate. Each of the plurality of electrolysis cells has: an anode, anion exchange membrane, and cathode set; and separators that are provided on respective sides of the set. The separators have an electroconductive plate and a frame body that supports an outer peripheral edge part of the electroconductive plate. The frame body is made of resin.
Resumen de: WO2025203851A1
This separator is used in an electrolytic cell provided with an anion exchange membrane. The separator is provided with a conductive plate and a frame body that supports the outer peripheral edge of the conductive plate. The frame body is composed of a resin material that is an electrically insulating material. The frame body includes: a supply manifold that is a supply port for an electrolytic solution; and a supply slit that connects the supply manifold and the inner peripheral edge of the frame body. The electrical resistance value of the supply slit is between 50Ω and 1000Ω inclusive. The electrical resistance value is obtained by dividing a value, which is obtained by dividing the length of the supply slit by the cross-sectional area of the supply slit, by the conductivity of the electrolytic solution flowing through the supply slit.
Resumen de: WO2025203850A1
This cell stack is provided to a hydrogen production device. The cell stack comprises a plurality of sub-stacks. Each of the plurality of sub-stacks comprises: a laminate in which a plurality of electrolytic cells are laminated; and current collector plates which are respectively disposed on two sides of the laminate. Each of the plurality of electrolytic cells has an anode, an ion exchange membrane, and a cathode.
Resumen de: WO2025205637A1
According to the present invention, an electrolysis cell 21 that serves as an electrochemical cell comprises: a solid electrolyte layer 211; a fuel electrode layer 213 which is superposed on the rear surface 211A side of the solid electrolyte layer 211 and contains Ni and Fe; and an air electrode layer 212 which is superposed on the upper surface 211B side of the solid electrolyte layer 211. The fuel electrode layer 213 is composed of a first layer 213F and a second layer 213S. The first layer 213F and the second layer 213S are constituted in the order of the first layer 213F and the second layer 213S from the side close to the rear surface 211A of the solid electrolyte layer 211. The concentration of Fe contained in the first layer 213F is 0.10 wt% or more and 0.80 wt% or less, and the concentration of Fe contained in the second layer 213S is less than 0.10 wt%.
Resumen de: WO2024170774A1
The present invention relates to a method of producing green hydrogen and associated products from pyrite separated from mine waste (e.g., disposed tailings or active tailings streams) in an energetically self-sustained process. This is achieved by a method according to the present invention comprising the following steps: (a) separation and enrichment of a mine waste material comprising pyrite to obtain a pyrite concentrate, (b) oxidation of the pyrite concentrate to obtain SO2 gas; (c) separation of the SO2 gas; (d) utilization of SO2 gas from step (c) to generate H2 gas and H2SO4 via a SO2-depolarized electrolyzer (SDE) process or a sulfur-iodine-cycle (S-I-cycle) process.
Resumen de: US2025309301A1
An electrochemical power system is provided that generates an electromotive force (EMF) from the catalytic reaction of hydrogen to lower energy (hydrino) states providing direct conversion of the energy released from the hydrino reaction into electricity, the system comprising at least two components chosen from: H2O catalyst or a source of H2O catalyst; atomic hydrogen or a source of atomic hydrogen; reactants to form the H2O catalyst or source of H2O catalyst and atomic hydrogen or source of atomic hydrogen; and one or more reactants to initiate the catalysis of atomic hydrogen. The electrochemical power system for forming hydrinos and electricity can further comprise a cathode compartment comprising a cathode, an anode compartment comprising an anode, optionally a salt bridge, reactants that constitute hydrino reactants during cell operation with separate electron flow and ion mass transport, and a source of hydrogen. Due to oxidation-reduction cell half reactions, the hydrino-producing reaction mixture is constituted with the migration of electrons through an external circuit and ion mass transport through a separate path such as the electrolyte to complete an electrical circuit. A power source and hydride reactor is further provided that powers a power system comprising (i) a reaction cell for the catalysis of atomic hydrogen to form hydrinos, (ii) a chemical fuel mixture comprising at least two components chosen from: a source of H2O catalyst or H2O catalyst; a source o
Resumen de: WO2025205502A1
Provided are: a separator for hydrogen production, the separator containing a woven fabric support and a porous material that contains an organic polymer, wherein the calender ratio of the woven fabric support calculated by the formula below is 73% or less; an alkaline water electrolysis member, an alkaline water electrolysis cell, an alkaline water electrolysis device, and a method for producing hydrogen, each using the same; and a method for producing a separator for hydrogen production. Calender ratio = (d2/(2 × d1)) × 100% In the formula, d1 represents the fiber diameter of the woven fabric support, and d2 represents the thickness of the woven fabric support.
Resumen de: WO2025201610A1
The invention relates to a method for producing syngas from carbonaceous feedstock comprising two or more different compositions of carbonaceous material (e.g. plastics, textiles, biomass, organic matter, natural gas, biogas, carbon dioxide, waste gases), the method comprising: Gasification of the waste feedstock by feeding the feedstock into a primary reaction zone, hereby generating a first output stream; Feeding the first output stream from the first reactor into a secondary reaction zone hereby generating a second output stream; Feeding the second output stream into a cleaning and conditioning reaction zone, hereby generating a third output stream Feeding the third output stream from the cleaning and conditioning reaction zone into a product synthesis reaction zone hereby generating a fourth output stream; Separating the fourth output stream from the product reaction into a fifth liquid crude product stream which is sent for further treatment (e.g., distillation) and at least a sixth and a seventh gas stream; At least part of the sixth gas stream is recycled to the product synthesis reaction zone; At least part of the seventh gas stream is looped back to the primary reaction zone for further conversion; Gasification parameters for the first and the second reaction zones are controlled to take into account the composition and amount of the recycled gas streams; and Providing a solid oxide electrolysis system (SOEC) to create a hydrogen and oxygen input to the process; Prov
Resumen de: AU2024245597A1
A hydrogen gas production system includes a first electrode having an electrocatalyst, a second electrode having an electron donor material including a plurality of active sites, the second electrode being structured to release electrons from the active sites in a predetermined operating potential range lower than an operating potential triggering oxygen evolution reaction; a first electrolyte in contact with the first and second electrodes, the electrolyte being a source of hydrogen protons; and a power source structured to provide the predetermined operating potential range to the system for the release and transfer of the electrons from the second electrode to the first electrode such that the hydrogen protons combine with the electrons to generate hydrogen gas.
Resumen de: AU2024286612A1
Disclosed are a system and method for the generation of hydrogen from a source of liquid comprising water. The system comprises a high fluid velocity electrolyzer comprising an inlet and an outlet, the inlet of the high fluid velocity electrolyzer fluidly connected to the source of liquid, and a gas fractionation system fluidly connected to the outlet of the high fluid velocity electrolyzer.
Resumen de: AU2025201297A1
An electrochemical reaction device includes: an electrochemical reaction structure including a cathode to reduce carbon dioxide to produce a carbon compound, an anode to oxidize water to produce oxygen, a diaphragm therebetween, a cathode flow path on the 5 cathode, and an anode flow path on the anode; a first flow path through which a first fluid to the cathode flow path flows; a second flow path through which a second fluid to the anode flow path flows; a third flow path through which a third fluid from the cathode flow path flows; a fourth flow path through which a fourth fluid from the anode flow path flows; and a gas-liquid separator in or on the anode flow path and to separate a gas containing the 10 oxygen from a fifth fluid containing the water and the oxygen through the anode flow path. An electrochemical reaction device includes: an electrochemical reaction structure including a cathode to reduce carbon dioxide to produce a carbon compound, an anode to 5 oxidize water to produce oxygen, a diaphragm therebetween, a cathode flow path on the cathode, and an anode flow path on the anode; a first flow path through which a first fluid to the cathode flow path flows; a second flow path through which a second fluid to the anode flow path flows; a third flow path through which a third fluid from the cathode flow path flows; a fourth flow path through which a fourth fluid from the anode flow path flows; 10 and a gas-liquid separator in or on the anode flow path and to separat
Resumen de: US2025309411A1
The invention relates to a power supply system comprising a modular combination of a hydrogen generation unit, a hydrogen usage unit and a control or regulation unit for controlling or regulating the operation of the hydrogen generation unit and the hydrogen usage unit.
Resumen de: US2025305155A1
A gas production system includes an electrolyzer configured to provide a gas comprising hydrogen gas and oxygen gas. The gas production system includes a housing having a housing inlet configured to receive the gas from the electrolyzer. The gas production system includes a first catalyst member configured to receive the gas from the housing inlet. The gas production system includes a second catalyst member configured to receive the gas from the first catalyst member. The gas production system includes a first injector configured to selectively provide a first amount of a treatment gas into the housing at a location between the housing inlet and the first catalyst member. gas production system includes a second injector configured to selectively provide a second amount of the treatment gas into the housing at a location between the first catalyst member and the second catalyst member.
Resumen de: US2025305156A1
A method of enhancing an electrolysis reaction in a solid oxide electrolysis cell (SOEC) for hydrogen production featuring: providing a water vapor stream to a cathode chamber of a SOEC; wherein the SOEC has an cathode chamber and an anode chamber, wherein the cathode chamber contains a catalyst; and wherein the catalyst has one or more conducting oxides and one or more catalytically active materials dispersed within the conducting oxides; and applying an electromagnetic field to the SOEC with a prescribed frequency and pulse mode specific to interactions of the catalyst and the electromagnetic field with the SOEC; and applying a DC bias to the SOEC, resulting in production of some amount of hydrogen from the water vapor stream in the cathode chamber of the SOEC.
Resumen de: US2025305163A1
An electrolyser includes an electrolysis assembly having an electrolysis cell configured to generate an electrolysis product from a supply medium. The electrolyser has a multi-junction photovoltaic cell having multiple p-n junctions and a regulation assembly having an electric power converter configured to convert at least a part of the electrical energy generated by the multi-junction photovoltaic cell according to requirements of the electrolysis assembly so as to provide an energy supply for the electrolysis assembly.
Resumen de: US2025305160A1
An electrolyte membrane comprising a recombination catalyst layer. The membrane has a thickness of less than or equal to 100 μm and is a single coherent polymer film comprising a plurality of ion conducting polymer layers. The recombination catalyst layer comprises particles of an unsupported recombination catalyst dispersed in an ion conducting polymer and the layer has a thickness in the range of and including 5 to 30 μm. Catalyst coated membranes (CCMs) incorporating the electrolyte membranes are also provided, together with methods of manufacturing the electrolyte membranes.
Resumen de: US2025305167A1
The present disclosure relates to electrode compositions, in particular electrode compositions comprising hybrid electrode particles, which can be used in solid oxide electrochemical cells. The present disclosure also relates to processes for preparing hybrid electrode particles. The present disclosure also relates to electrodes, including sintered electrodes, comprising the electrode compositions, and to solid oxide electrochemical cells comprising the electrode compositions.
Resumen de: WO2025207369A1
The disclosure presents an integrated system consisting of a wastewater production unit, e- methane reactor, an electrolyzer for producing hydrogen, a cryogenic separation unit and an ammonia production unit, where e-methane is produced by reaction of carbon dioxide obtained from direct air capture/biogenic CCh/captured industrial CO2 emissions/oxidized solid carbon, and from CO2 separated from biogas obtained from wastewater treatment, and hydrogen gas from electrolysis of water. The hydrogen gas is also reacted with nitrogen obtained from the cryogenic unit for the synthesis of ammonia, where heat from ammonia synthesis is transferred to e-methane reactor for energy efficiency. By integrating these units and reactors, the disclosure provides a system for efficient use of energy and by-products.
Resumen de: US2025309278A1
The present disclosure relates to a trifunctional catalyst, a method of the trifunctional catalyst, and a water splitting system using the trifunctional catalyst. The water splitting system according to embodiments of the present disclosure can be applied to energy storage and conversion by using characteristics of three types of catalytic reactions (oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction HER)) and can serve as a self-powered clean hydrogen production system at the same time.
Resumen de: US2025305162A1
An electrolytic unit includes (i) a plate having a first side and a second side opposite each other, the first side being an anode side, and the second side being a cathode side, (ii) an anode porous transport layer and a cathode porous transport layer respectively disposed at the first side and the second side, (iii) an exchange membrane, (iv) an anode catalyst layer and a cathode catalyst layer respectively disposed at two sides of the exchange membrane, (v) an anode gas diffusion electrode positioned on the anode catalyst layer, and (vi) a cathode gas diffusion electrode positioned on the cathode catalyst layer. The cathode porous transport layer, the plate, and the anode porous transport layer are formed as an integral mechanical portion, and the anode gas diffusion electrode, the anode catalyst layer, the exchange membrane, the cathode catalyst layer and the cathode gas diffusion electrode are formed as an integral electrochemical portion. Also provided is an electrolytic stack the includes the electrolytic unit described above. By way of the above, the assembly and maintenance of the electrolytic unit and the electrolytic stack are facilitated.
Nº publicación: US2025304527A1 02/10/2025
Solicitante:
BASF SE [DE]
BASF SE
Resumen de: US2025304527A1
Ethanolamines, polyethylenimine and ammonia having a low molar share of deuterium, a process for making ethanolamines, polyethylenimine and ammonia based on non-fossil energy, the use of the molar share of deuterium in hydrogen and downstream compounds based on hydrogen for tracing the origin of preparation of hydrogen and downstream compounds based on hydrogen, and a process for tracing the origin of preparation of hydrogen and downstream compounds based on hydrogen by determining the molar share of deuterium in hydrogen and said downstream compounds based on hydrogen, applications of the polyethylenimine and the use of the polyethylenimine, and the use of the ethanolamines, preferably monoethanolamine and/or diethanolamine, or the polyethylenimine as liquid or solid CO2 absorbents in CO2 capturing processes.