Resumen de: AU2024237545A1
A method for generating and treating a two-phase outflow from one or more pressurised electrolyser stacks which are adapted to electrolyse water into hydrogen and oxygen, whereby a pump supplies a catholytic fluid flow from one first gas liquid gravitational separator vessel to the electrolyser stacks and whereby a further pump supplies an anolytic fluid flow from one second gas liquid gravitational separator vessel to the electrolyser stacks, and whereby at least one cyclone type gas liquid separator receives combined outflows from the catholytic chambers and/or receives combined outflows from anolytic chambers respectively inside corresponding gravitational gas liquid separator vessel whereby further, the at least one cyclone type gas liquid separator separates the gas from the liquid along a generally horizontal cyclonic rotation axis inside the gas liquid gravitational separator vessel. An electrolyser system is also provided.
Resumen de: DE102024202623A1
Die Erfindung betrifft ein Verfahren zur Herstellung einer Elektrolysezelle (1), aufweisend eine Membran (2) sowie beidseits der Membran (2) angeordnete Schichten und/oder Lagen (3, 4, 5, 6) zur Ausbildung einer Anode (A) und einer Kathode (K), wobei mindestens einer Schicht und/oder Lage (3, 4, 5, 6) die Funktion eines Nukleierungshilfsmittels aufgeprägt wird, indem- die Schicht und/oder Lage (3, 4, 5, 6) aus einem Nukleierungsmaterial hergestellt wird,- ein Nukleierungsmaterial in die Schicht und/oder Lage (3, 4, 5, 6) ein- oder aufgebracht wird,- eine Kavitäten (7) ausbildende Oberflächenstruktur in die Schicht und/oder Lage (3, 4, 5, 6) eingebracht wird und/oder- die Schicht und/oder Lage (3, 4, 5, 6) hydrophob eingestellt wird, vorzugsweise mit Hilfe eines Nukleierungsmaterials.Die Erfindung betrifft ferner eine Elektrolysezelle (1) für einen Elektrolyse-Stack zur Herstellung von Wasserstoff.
Resumen de: DE102024202622A1
Die vorgestellte Erfindung betrifft ein Verfahren (100) zum Betreiben eines Elektrolysesystems (200).Das vorgestellte Verfahren (100) umfasst das Verdampfen (101) eines Elektrolyten in einem Zellstapel (101) des Elektrolysesystems (200), um eine Temperatur einer Zelle (300) des Elektrolysesystems (200) einzustellen und das Kontrollieren (103) des Verdampfens des Elektrolyten durch Einbringen eines Gasmassenstroms in das Elektrolysesystem (200), um einen Dampfpartialdruck in dem Zellstapel (201) einzustellen.
Resumen de: WO2025196454A1
Disclosed is a method of producing hydrogen from the reaction of liquid aluminium or a liquid aluminium alloy with water vapour. The method includes the steps of: (a) providing liquid aluminium or liquid aluminium alloy, wherein said liquid has a surface; (b) reacting said liquid with water vapour in order to generate alumina and hydrogen, wherein if the reaction is carried out at a temperature range of 650 to 900 °C and a pressure range of 0.1 to 1 MPa, at least 50% of the hydrogen dissolves in the liquid, and wherein said reaction takes place at the surface and/or in the liquid; (c) extracting hydrogen in the form of gas from the liquid.
Resumen de: WO2025195683A1
The invention relates to a method and a device for synthesizing ammonia (8), wherein a gas mixture (make-up gas) (1), which comprises hydrogen and nitrogen and is supplied with a temporally fluctuating flow rate, is provided after being compressed in a first compressor (make-up gas compressor) (V1) in order to form an ammonia synthesis gas (3) that is compressed with the aid of a second compressor (recycle compressor) (V2) and is then reacted in an ammonia reactor (R) in order to form an ammonia-containing synthesis product (5), from which a recycled gas (2) comprising hydrogen and nitrogen is separated in order to be recirculated in order to form the ammonia synthesis gas (3). The flow rate of the recycled gas (2) is controlled via the recycle compressor (V2), which is integrated into a control circuit as an actuator and the conveying capacity of which can be set independently of the conveying capacity of the make-up gas compressor (V1). The invention is characterized in that the control circuit is designed with a higher-level control system which outputs a control signal that is based on the load of the ammonia reactor in order to change the conveying capacity of the recycle compressor (V2), said control signal being corrected by a PID control circuit in such a way that the pressure in the ammonia reactor (R) is always within a specified value range.
Resumen de: WO2025195703A1
The invention relates to a method for producing a synthetic fuel (F), comprising the steps (S1): carrying out a first reaction process, wherein the first reaction process creates a gas mixture of synthesis gas (SG) and carbon dioxide (CO2) with the addition of biomass (BM), oxygen (O2), wherein the synthesis gas (SG) contains carbon monoxide (CO) and hydrogen (H2); (S2): separating carbon dioxide (CO2) from the gas mixture and supplying hydrogen (H2) to separated carbon dioxide (CO2) for a second reaction process; (S3): carrying out a second reaction process, wherein in the second reaction process methanation is carried out using the reactants carbon dioxide (CO2) and hydrogen (H2), wherein methane (CH4) and water (H2O) are produced as an intermediate product; (S4): feeding back methane (CH4) and water (H2O) obtained from the second reaction process into the first reaction process, wherein a gas mixture containing synthesis gas (SG) is produced; and (S5): discharging synthesis gas (SG) and converting synthesis gas into a synthetic fuel (F). The invention further relates to a system (1) for producing a synthetic fuel (F), which is designed in particular to carry out the method.
Resumen de: WO2025195682A1
The invention relates to a method and a device for synthesizing ammonia (8), wherein a gas mixture (1) comprising hydrogen and nitrogen is provided with a temporally fluctuating mass flow in order to form an ammonia synthesis gas (3), which is converted into an ammonia-containing synthesis product (5) in an ammonia reactor (R) after a compression step (V2) and from which a recycled gas (2) comprising hydrogen and nitrogen is separated in order to be returned via a return line in order to form the ammonia synthesis gas (3), the mass flow of the recycled gas (2) being controlled via an adjustable throttle device (b) which is provided in the return line (2) and is integrated into a control circuit as an actuator. The invention is characterized in that the control circuit is designed with a higher-level closed-loop control system that outputs an actuating signal, which is based on the load of the ammonia reactor, for changing the degree of opening of the throttle device (b), said actuating signal being corrected by a PID control circuit in such a way that the pressure in the ammonia reactor (R) is always within a specified value range.
Resumen de: WO2025195698A1
The invention relates to an apparatus (2) for producing hydrogen, from a feedstock stream (3) comprising ammonia, traces of water and oil contaminants, said apparatus (2) comprising: - a vaporizer (4) comprising a vaporization chamber (6) configured to receive the feedstock stream (3) and produce a vaporized purified ammonia stream (7), said vaporization chamber (6) comprising a blowdown outlet (8) configured to discharge a blowdown stream (10) comprising the traces of water and oil contaminants from said vaporization chamber (6); - an ammonia cracking reactor (12) for performing an endothermic reaction of said vaporized purified ammonia stream (7), thereby producing said hydrogen; and - a fired equipment (14); wherein said blowdown outlet (8) is connected to the fired equipment (14) for providing the blowdown stream (10) as an ammonia fuel stream to the fired equipment (14).
Resumen de: WO2025196219A1
A process for preparing acetylene and/or synthesis gas by partial oxidation of hydrocarbons with an oxidizing agent, wherein the oxidizing agent comprises O2 and H2, wherein the oxidizing agent is obtained at least in part by water splitting, preferably by electrolysis, the water splitting, preferably the electrolysis, preferably using energy generated at least in part from non-fossil resources, a cracking gas stream obtainable by the process according to the present invention, acetylene obtainable by the process according to the present invention, acetylene having a low total cradle to gate product carbon footprint, synthesis gas obtainable by the process according to the present invention, synthesis gas comprising hydrogen, CO, CO2 and CH4, wherein the separated synthesis gas stream has a δ18O value of < 22 ‰, referred to the international standard VSMOW ((Vienna- Standard- Mean-Ocean- Water)), the use of an oxidizing agent comprising O2 and H2 for the preparation of acetylene and synthesis gas, the use of the inventive acetylene or the acetylene obtained by the inventive process for the preparation of butynediol, butanediol, butenediol, polybutylene terephthalate (PBT), polybutylene adipate terephthalate (PBAT), tetrahydrofurane (THF), polytetrahydrofurane (polyTHF), polyester-based thermoplastic polyurethanes (TPUs), polyether-based TPUs, gamma-butyrolactone, pyrrolidine, vinylyrrolidone, polyvinylpyrrolidone, N-methylpyrrolidone, vinyl ether, polyvinyl ether, terpenes
Resumen de: WO2025196220A1
The disclosure notably relates to a computer-implemented method for predictive maintenance of a system. The system comprises a hydrogen energy component, a cooling circuit, at least one actuator of the cooling circuit and at least one sensor collecting operating data during an operating of the system. The method comprises, during the operating of the system, the following three steps. The method comprises a first step of obtaining the operating data collected by to the at least one sensor. The method comprises a second step of estimating that a current state of the system is the fault state. The method comprises a third step of predicting a future state of the system. Such a method forms an improved solution for predicting maintenance of the system comprising the hydrogen energy component.
Resumen de: WO2025196629A1
This invention relates to a catalyst, in particular a catalyst for producing hydrogen from ammonia, catalyst comprising a ternary metal imide of formula (I): X2Y(NH)2, wherein X is a metal selected from a group consisting of alkali metals and alkaline earth metals, and Y is a metal selected from a group consisting of transition metals and lanthanides.
Resumen de: WO2025195607A1
A system for producing hydrogen gas by reacting silicon and water, comprises a reaction chamber, a water supply device, configured for supplying water to the reaction chamber, a silicon supply device, configured for supplying silicon to the reaction chamber, a hydrogen collection arrangement, configured for collecting hydrogen gas from the reaction chamber and supplying said hydrogen gas via a main output channel to an application hydrogen consumer, and a controller, configured to control at least one of the water supply device, the silicon supply device and the hydrogen collection arrangement. The disclosure provides a system and methods for producing hydrogen gas by reacting silicon and water. The disclosure further provides a vehicle comprising said system and a portable device comprising said system.
Resumen de: WO2025195608A1
A system for producing hydrogen gas by reacting a metal selected from a group consisting of aluminum, magnesium, calcium, lithium, potassium and sodium and water, comprises a reaction chamber, a water supply device, configured for supplying water to the reaction chamber, a metal supply device, configured for supplying metal to the reaction chamber, a hydrogen collection arrangement, configured for collecting hydrogen gas from the reaction chamber and supplying said hydrogen gas via a main output channel to an application hydrogen consumer, and a controller, configured to control at least one of the water supply device, the metal supply device and the hydrogen collection arrangement. The disclosure provides a system and methods for producing hydrogen gas by reacting metal and water. The disclosure further provides a vehicle comprising said system and a portable device comprising said system.
Resumen de: US2025296047A1
A carbon dioxide process apparatus includes: a recovery device that includes a carbon dioxide absorption portion which dissolves carbon dioxide in an electrolytic solution of a strong alkali and absorbs the carbon dioxide; an electrochemical reaction device to which the electrolytic solution in which the carbon dioxide is dissolved by the carbon dioxide absorption portion is supplied and which electrochemically reduces the carbon dioxide; an anion exchange type fuel cell that supplies electric energy to the electrochemical reaction device; a carbon dioxide concentration gas supply passage that supplies a carbon dioxide concentration gas generated by the fuel cell to the electrolytic solution which is discharged from the recovery device and before being supplied to the electrochemical reaction device; and a hydrogen supply passage that supplies hydrogen generated by the electrochemical reaction device to the fuel cell.
Resumen de: US2025297393A1
A CO2 conversion method includes: generating CO and H2O by a RWGS reaction from CO2 and H2; generating C2H4 and H2 by CO electrolysis from the CO and H2O; and using the H2 generated by the CO electrolysis as the H2 of the RWGS reaction.
Resumen de: US2025297392A1
A water electrolysis stack includes: a membrane electrode assembly including an electrolyte membrane and a plate-shaped current collector provided on one of both sides of the electrolyte membrane in the thickness direction thereof; a water introduction unit for introducing water from the outside; a water flow path member disposed so as to face the current collector and provided with a water flow path for guiding, along the surface direction of the current collector, the water introduced into the water introduction unit; and a pumping unit for pumping the water to the water introduction unit. The pumping unit continuously changes the pumping amount of the water, thereby pulsating the water flowing through the water flow path along the surface direction of the current collector.
Resumen de: US2025297389A1
An electrolysis device includes: an electrolysis cell; a cathode supply flow path; an anode supply flow path; a cathode discharge flow path; an anode discharge flow path; a cathode flow rate regulator to adjust a flow rate A of a cathode supply fluid; an anode flow rate regulator to adjust a flow rate B of a anode supply fluid; a first flowmeter to measure a flow rate C of a cathode discharge fluid; a second flowmeter to measure a flow rate D of a anode discharge fluid; and a control device to estimate a Faraday efficiency according to a relational expression for approximating the Faraday efficiency to a function including the C and D, and control the cathode flow rate regulator according to the estimated Faraday efficiency to control the A.
Resumen de: US2025297390A1
A diagnosis system of an electrolysis device, includes: a device to output an impedance data indicating a measurement result of a complex impedance; a first memory unit to store prior data including a relation data indicating a relation between state of the device and a diagnosis result of a state of the device; a first processing unit to analyze the impedance data, judge validity of an analysis result, and output an analysis data indicating the analysis result in which data indicating at least a part of a frequency region of the measurement result is determined valid; a second processing unit to output a state data indicating the state based on first data including the analysis data; a second memory unit to store second data including the state data; and a third processing unit to output a diagnosis data based on data including the prior data and the second data.
Resumen de: US2025297377A1
The present invention relates to a Solid Oxide Electrolysis unit for industrial hydrogen. carbon monoxide or syngas production comprising at least two Solid Oxide Electrolysis cores that each comprise several Solid Oxide Electrolysis stacks of Solid Oxide Electrolysis cells. a power supply to manage electrical power to the Solid Oxide Electrolysis cores and piping connected to the Solid Oxide Electrolysis cores. According to the invention. the Solid Oxide Electrolysis unit comprises a power supply module. which comprises a transformer and at least one power supply unit. and a piping module. which comprises piping headers and fluidic connections going to and from the Solid Oxide Electrolysis cores. wherein the power supply module and the piping module are arranged adjacent to each other and the Solid Oxide Electrolysis cores are arranged above the power supply module and/or the piping module.
Resumen de: US2025297375A1
An electrochemical reaction device includes: an electrochemical reaction structure including a cathode to reduce carbon dioxide to produce a carbon compound, an anode to oxidize water to produce oxygen, a diaphragm therebetween, a cathode flow path on the cathode, and an anode flow path on the anode; a first flow path through which a first fluid to the cathode flow path flows; a second flow path through which a second fluid to the anode flow path flows; a third flow path through which a third fluid from the cathode flow path flows; a fourth flow path through which a fourth fluid from the anode flow path flows; and a gas-liquid separator in or on the anode flow path and to separate a gas containing the oxygen from a fifth fluid containing the water and the oxygen through the anode flow path.
Resumen de: US2025283230A1
A method for producing an electrolysis cell includes a joining step of joining a frame portion of a protective sheet member provided between a membrane electrode assembly and a fluid-supply-side current collector to a portion of the membrane electrode assembly on the outer side of the covered portion where an electrolyte membrane is covered with an electrode catalyst layer to form a joint, and a joined body stacking step of stacking the membrane electrode assembly and the protective sheet member joined together on the fluid-supply-side current collector with the protective sheet member facing the fluid-supply-side current collector.
Resumen de: WO2025191937A1
In the present invention, a third catalyst that promotes the bonding of hydrogen and oxygen is disposed on the anode side of an electrolyte membrane (51). Even when hydrogen generated on the cathode side passes through the electrolyte membrane (51) and enters the anode side, the action of the third catalyst enables said hydrogen to bond with oxygen generated on the anode side, thereby converting into water. This makes it possible to reduce the concentration of hydrogen in the gas discharged from the anode side. Particles of the third catalyst have a hollow structure with a cavity therein. Therefore, the amount of the third catalyst used can be reduced while maintaining the surface area of the particles. Additionally, because the particles of the third catalyst have an opening, the movement of water, hydrogen, and oxygen at the anode side is less likely to be inhibited. Accordingly, reductions in the reaction rate of electrolysis on the anode side can be suppressed.
Resumen de: WO2025199193A1
Provided herein are catalysts for producing hydrogen via the hydrogen evolution reaction (HER) during water splitting, methods of producing hydrogen via photocatalytic water splitting using the catalysts, and compositions for use m photocatalytic water splitting that include the catalysts. In some embodiments, a catalyst hereof is a metal complex of Formula (I): M(L1)( L2)A, wherein M is a transition metal, L1 and L2 are both ligands independently forming one or more coordinate bonds with the metal M, and A is an anion, and wherein L1 is a tetrapyridyl-amine (Py4N) having four pyridyl groups and an amine group each forming a coordinate bond with the metal M.
Resumen de: WO2025199135A1
Disclosed are electrodes comprising a conductive support substrate having an electrocatalyst coating containing crystalline molybdenum phosphides (MoxPy) in size ranging from micro- to nano-particles. The conductive supporting substrate is capable of incorporating a material to be reduced, such as CO2 or CO. Also disclosed are electrochemical methods for generating oxyhydrocarbons from CO2 or CO using water as a source of hydrogen.
Nº publicación: US2025296836A1 25/09/2025
Solicitante:
AIR PRODUCTS AND CHEMICALS INC [US]
Air Products and Chemicals, Inc
Resumen de: US2025296836A1
In a process in which ammonia is cracked to form a hydrogen gas product and an offgas comprising nitrogen gas, residual hydrogen gas and residual ammonia gas, residual ammonia is recovered from the offgas from the hydrogen recovery process by partial condensation and phase separation, and hydrogen is recovered from the resultant ammonia-lean offgas by partial condensation and phase separation. The recovered ammonia may be recycled the cracking process and the recovered hydrogen may be recycled to the hydrogen recovery process to improve hydrogen recovery from the cracked gas. Overall hydrogen recovery from the ammonia may thereby be increased to over 99%.