Resumen de: EP4571906A1
The present invention relates to a hydrogen ion conductive multilayer composite membrane comprising one or more inner reinforced membrane comprising a porous PTFE layer impregnated with an ionomer composition and outer reinforced membranes positioned on both sides of the inner reinforced membrane, wherein the outer reinforced membranes comprise a porous PTFE layer impregnated with an ionomer composition.
Resumen de: EP4570960A1
Die Erfindung betrifft eine Elektrolysezelle (01) zur Elektrolyse von CO2 mit einer Kathodenseite (02) und einer Anodenseite (03). Dabei umfasst die Elektrolysezelle (01) eine Kathodenplatte (04), eine Gaskammer (06), eine Gasdiffusionsschicht (08), eine Katalysatorschicht (09), eine Wasserkammer (07) und eine Anodenplatte (05). Die Kontaktierung der Katalysatorschicht (09) wird durch die Verwendung mehrerer Strombrücken (10) optimiert. Hierzu sind diese (10) elektrisch leitend mit der Kathodenplatte (04) und der Katalysatorschicht (09) verbunden und durchdringen dabei die Gasdiffusionsschicht (08).
Resumen de: EP4570742A1
A method for producing hydrogen comprises a) performing water electrolysis to produce oxygen and a first hydrogen product stream; b) reforming a hydrocarbon stream with oxygen to produce a reformed stream containing CO<sub>x</sub> and hydrogen; c) optionally, subjecting said reformed stream to a water gas shift process to produce a shifted product stream containing additional hydrogen and carbon dioxide; and separating hydrogen from the shifted product stream to produce a second hydrogen product stream; and d) directing oxygen produced in step a), optionally after buffering, to step b). The method allows for producing constant, continuous and uninterrupted amounts of emission-free hydrogen accomodating external influences such as fluctuations with weather conditions, day-night cycles and seasons. Said process can be run continuously and is not reliant on only one energy source which might be fluctuating.
Resumen de: EP4570950A1
The present invention relates to an electrolyzer designed for the generation of hydrogen and oxygen through water electrolysis. The electrolyzer comprises a housing structure accommodating at least one electrolytic cell, which includes an anode, a cathode, and an ion-conducting membrane. A water inlet is provided to introduce water into the electrolytic cell, and an electrical power source is operatively connected to the anode and cathode to facilitate the electrolysis process. The electrolyzer also includes separate outlets for the efficient extraction of hydrogen and oxygen generated during electrolysis. A multi-parameter optical measurement system is integrated within the electrolyzer. This system features at least one optical fiber with multiple sensing points distributed along its length, each capable of detecting various operational parameters within the electrolyzer.
Resumen de: WO2024184065A1
An offshore hydrogen production platform (100) is described comprising a support structure (101) and plurality of vertically spaced decks (110, 111, 112) arranged to be supported by the support structure (101). The plurality of vertically spaced decks (110,111, 112) comprise an uppermost deck (110), and wherein the uppermost deck (110) comprises a hydrogen production equipment (130). The offshore hydrogen production platform (100) further comprises an enclosure (113) arranged to encapsulate the hydrogen production equipment (130). Also described is a method of producing hydrogen using hydrogen production equipment (130) located on a uppermost deck (110) of an offshore hydrogen platform (100).
Resumen de: CN119677896A
In one embodiment, discussed herein is a method of producing hydrogen, the method comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a membrane between the anode and the cathode, where the membrane is both electronically and ionically conductive; (b) introducing a first stream to the anode, wherein the first stream comprises ammonia; (c) introducing an oxidizing agent to the anode; and (d) introducing a second stream to the cathode, wherein the second stream comprises water and provides a reducing environment to the cathode; wherein the hydrogen is generated from water in an electrochemical manner; wherein the first stream and the second stream are separated by the membrane; and wherein the oxidant and the second stream are separated by the membrane.
Resumen de: EP4570958A2
A method of operating an electrolyzer module includes providing a first air stream and steam into a stack of electrolyzer cells located in a hotbox and outputting a product stream containing hydrogen and steam, and an oxygen exhaust stream, providing the product stream to an internal product cooler (IPC) heat exchanger located in the hotbox to reduce the temperature of the product stream by transferring heat to the first air stream, and providing the product stream from the IPC to an external product cooler (EPC) heat exchanger located outside of the hotbox and inside of a cabinet housing the hotbox to further reduce the temperature of the product stream by transferring heat to a fluid stream.
Resumen de: EP4570957A2
A method operating an electrolyzer system includes producing hydrogen by electrolysis of steam in at least one electrolyzer cell stack of the electrolyzer system using power received from an intermittent power source, detecting a reduction in a level of power received from the intermittent power source below a first threshold, decreasing a rate of producing hydrogen in response to the detected reduction in the level power below the first threshold, detecting a reduction in a level of power received from the intermittent power source below a second first threshold that is lower than the first threshold, and switching the electrolyzer system into a hot standby mode in which the electrolyzer system does not produce hydrogen and maintains the least one electrolyzer cell stack above a predetermined threshold temperature.
Resumen de: GB2636333A
A system comprising two electrolysis subsystems for electrolysis of water to produce hydrogen, wherein the first subsystem produces waste thermal energy and the second uses this energy. One of the subsystems may use a low-temperature electrolysis technology and the other a high-temperature technology. Said low-temperature process may be anionic exchange membrane (AEM) electrolysis, alkaline electrolysis or a combination. The high-temperature process may be solid oxide electrolysis cell (SOEC) electrolysis. The waste thermal energy may be recovered into a heat exchange fluid and the system may also comprise a heater or a steam generator. Also claimed is a method for the system.
Resumen de: DE102024125854A1
Verfahren zur Konditionierung einer Elektrolysevorrichtung (10), die zur Erzeugung von Wasserstoff aus Wasser mit Hilfe von elektrischem Strom eingerichtet ist, wobei die Elektrolysevorrichtung (10) vor dem Einbau in eine Wasserstoffproduktionsanlage zumindest einer chemischen Konditionierung über ein Durchspülen der Elektrolysevorrichtung (10) unterzogen wird.
Resumen de: DE102023212702A1
Elektrolysesystem mit einem Elektrolysestack (1), der eine Vielzahl von elektrolytischen Zellen (101) umfasst, die jeweils einen Kathodenraum (102) und einen Anodenraum (103) aufweisen und die dazu ausgebildet sind, Wasser im Anodenraum (103) elektrolytisch in Wasserstoff und Sauerstoff aufzuspalten. Der im Kathodenraum (102) erzeugte Wasserstoff wird über einen Kathodenauslass (2) des Elektrolysestacks (1) und eine hieran angeschlossene Medienleitung (7) einem ersten Gas-Flüssig-Separator (9) zugeführt. Ein zweiter Gas-Flüssig-Separator (15) ist mit dem Kathodenauslass (2) verbindbar. Je nach Druck im Elektrolysestack (1) wird der Kathodenauslass mit dem ersten (9) oder mit dem zweiten Gas-Flüssig-Separator (15) verbunden.
Resumen de: DK202330334A1
In an alkaline electrolyzer (12), especially for production of hydrogen gas, the separator (11) has larger pores in layers (8, 9) on its outer sides (7 A, 7C), facing the electrodes (13, 14), than in the bulk layer (10). In a practical embodiment, the separator (11) is composed of two diaphragms (7, 7 '), each with asymmetric pore structure, where the diaphragms (7, 7') are oriented such that largest pores are on the outer sides of the separator (11 ).
Resumen de: US2025188630A1
An oxynitride catalyst includes NiaMbNcOd, wherein M is Nb, Mn, or Co, a>0, b>0, c>0, d>0, and a+b+c+d=1. A hydrogen evolution device includes an anode and a cathode dipped in an electrolyte, and the anode includes the oxynitride catalyst. The oxynitride catalyst can be disposed on a support. The oxynitride catalyst may have a polyhedral structure.
Resumen de: AU2023285309A1
The present invention relates to a framing structure for an electrolyser subject to internal pressure, able to withstand corrosive environments and radial pressure forces. The present invention also relates to an electrolytic cell and electrolyser equipped with said framing structure, as well as its use in high-pressure water electrolysis applications.
Resumen de: EP4570954A1
The invention relates to a coated diaphragm (16) of an electrochemical device (8) for alkaline electrolysis. The diaphragm (16) comprises an alkaline membrane (18) coated on at least one side with a catalyst layer (20). The catalyst layer (20) is obtained by deposition of at least one metallic catalyst on the membrane (18) by physical vapor deposition, the metallic catalyst being chosen between Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf, Ta, W and any combination thereof.
Resumen de: CN120155192A
本发明提供一种钴包覆硫化镉光催化产氢材料及其制备方法和应用,涉及光催化材料技术领域,钴包覆硫化镉光催化产氢材料的制备方法,具体包括如下步骤:S1、以硫代乙酰胺、乙酸镉二水合物为原料,采用溶剂热法制得CdS纳米颗粒;S2、以乙酸钴四水合物和步骤S1制得的CdS纳米颗粒为原料,采用离子吸附方法制得钴包覆硫化镉光催化产氢材料。与现有技术相比,本发明提供一种钴包覆硫化镉光催化产氢材料及其制备方法和应用,有效抑制了硫化镉在光照条件下的自氧化过程,减少了硫离子的溶出,显著提高了材料的光化学稳定性,延长了其使用寿命。
Resumen de: CN120158766A
本发明公开了一种二氧化钼负载铂催化剂的制备方法及其应用,属于纳米催化剂技术领域,制备方法:将乙酰丙酮铂和乙酰丙酮钼溶解在有机溶剂中,滴涂在碳纸上并加热,将所得负载前驱体样品的碳纸固定在焦耳加热装置中完成快速碳热冲击反应制得。本发明可有效分散金属铂,以暴露更多的反应活性位点,同时利用金属铂与二氧化钼载体之间的相互作用,降低金属铂对氢的吸附能力,增强催化体系活性和稳定性,提升电解水制氢催化活性,并显著降低金属铂的使用量。
Resumen de: CN120155131A
一种氨制氢技术领域的高效的自热型氨分解制氢反应器,包括燃烧尾气出口、保温层壳体、反应层壳体、螺旋折流板、燃烧室壳体、螺旋助燃气管、保温层、反应层、燃烧室、斜向开口、氨分解入口、氨燃烧入口、助燃气入口、分解气出口、挡板座、尾气连通口、分解气汇集管、分解气汇集室,反应层壳体嵌套于保温层壳体内,两者之间形成保温层,燃烧室壳体嵌套于反应层壳体内,两者之间形成反应层。本发明采用氨为主要燃料,用氢作为引燃料,氨氢在燃烧室中掺混燃烧为氨分解反应提供热量,从而实现自热式的氨分解制氢。本发明采用了三层嵌套式的结构,具有结构紧凑、能量利用率高等优点。
Resumen de: CN120158755A
本发明公开了一种制备萘醌衍生物并产氢气的方法和电解池,属于储能技术领域。所述电解池包括端板I、集流体I(正极)、电极装置、集流体II(负极)和端板II依次固定叠合;电极装置包括正极单元、膜电极和负极单元依次叠合;正极单元内设有正电极和正极电解液;负极单元内设有负电极且不设置负极电解液;膜电极包括质子交换膜、催化剂层和气体扩散层;质子交换膜的第一面和正极单元接触,质子交换膜的第二面上设有催化剂层,催化剂层和气体扩散层叠合,气体扩散层和所述负极单元接触。本发明方法将有机活性分子电化学氧化与产氢耦合,可更加快速且便捷地获得大量的有机活性分子和高纯氢气。
Resumen de: CN120161007A
本发明涉及电化学测试相关技术领域,且公开了一种电催化析氢性能测试装置,包括反应箱体,反应箱体的侧面设置有检测箱体,反应箱体和检测箱体之间固定连接有连接管,检测箱体的内壁上转动连接有齿轮,齿轮上固定连接有光线发射器,齿轮的底部啮合连接有齿条,齿条的侧面上固定连接有一号弹簧阻尼装置,检测箱体的顶部内壁上固定连接有检测板,检测板内部设置有红外检测板和光线接收装置,连接管包括装置外壳,装置外壳上开设有通气孔,装置外壳的内侧面上开设有通气槽;氢气在检测箱体中推动齿条运动,改变了齿轮上光线发射器照射角度,利用红外检测板检测氢气浓度,光线接收装置检测气体生成量,达到检测装置析氢性能的目的。
Resumen de: CN120155197A
本发明涉及光催化析氢领域一种富硫空位多孔二硫化钼与硫化锌镉构建Ⅱ型异质结光催化剂的制备及其应用。本发明的目的是提供一种制备工艺简便、成本低廉且具有高效光催化析氢性能的Ⅱ型异质结光催化剂,以提升光催化析氢效率,缓解当前能源危机下对清洁能源的迫切需求。所采用的方法:以二氧化硅为模板,通过氢氟酸的刻蚀作用,生成富硫空位多孔二硫化钼,将其与醋酸锌、氯化镉、硫脲和聚乙烯吡咯烷酮一同作为原料,采用水热合成方法,制备的一种富硫空位多孔二硫化钼与硫化锌镉构建Ⅱ型异质结光催化剂可适用于光催化析氢领域且具有较高的催化活性和稳定性。
Resumen de: CN120157927A
本发明属于新材料技术领域,涉及以聚砜树脂为粘结剂的层状双氢氧化物膜,所述的层状双氢氧化物膜是以聚砜树脂为粘结剂将层状双氢氧化物颗粒或层状双氢氧化物纳米片连接成连续薄膜得到的。还涉及一种以聚砜树脂为粘结剂的层状双氢氧化物膜制备方法及应用。本发明层状双氢氧化物膜采用具有阴离子导电性的LDH为主体,其可以在碱溶液中表现出明显低于商品Zirfon膜的面电阻,因此本发明隔膜用于水电解时,可以表现出更高的电解效率。本发明的成膜方法是基于化工分离领域分离膜制备中常用的相转化原理,故其规模化制备便于以分离膜相转化制备的成熟工业设备为基础通过工艺参数改变而达成,易于实现批量化制备。
Resumen de: CN120158754A
本发明属于电解槽技术领域,尤其涉及一种阴阳极网改进型电解槽;所述阴阳极网改进型电解槽包括:框架,在框架两侧分别对称安装有阳极网以及阴极网,所述阴极网包括多个排列分布安装的极网筋片,极网筋片表面开设有定位孔;同时所述极网筋片一侧上下分布开设有多个矩形槽,矩形槽内部放置有极网筋条柱;所述框架、阳极网以及阴极网之间形成阳极室以及阴极室;所述的阴阳极网改进型电解槽在极网筋片一侧开设矩形槽,便于快速对位校准放置极网筋条柱,使得整个阴极网组装效率高效,且由于极网筋条柱横截面积更小,再加上横置稳定放置在矩形槽内部,在受到流动的电解液产生的冲击力时,波动幅度较小,不容易使整个阴阳极网产生较大的波动。
Resumen de: CN120157186A
本发明公开了一种钼酸铁电催化剂的制备方法及其在析氧反应中的应用,制备方法包括以下步骤:(1)将铁源、钼源、镍盐和硫脲分别溶于溶剂中,然后混合在一起混合均匀得到混合溶液;(2)将混合溶液进行水热反应,反应结束后,洗涤,干燥,获得所述钼酸铁电催化剂。本发明采用一步水热的方法,制备方法简单有效,制备成本较低,设计合理,并且镍的掺入调节了Fe和Mo的d带中心位置,优化了反应中间体的吸附能,降低反应能垒,合适的d带中心使催化剂表面更易吸附反应物,同时利于产物的脱附,从而加速OER动力学,提升了OER性能,实现了催化剂高催化活性和高稳定性。
Nº publicación: CN120161101A 17/06/2025
Solicitante:
国网浙江省电力有限公司电力科学研究院大连理工大学
Resumen de: CN120161101A
本发明公开了一种AEM水电解膜电极失效诊断方法。本发明包括:在AEM水电解膜电极正常运行时输入不同交流振幅的载波,进行载波分析,确定交流振幅大小,得到正常状态下电化学交流阻抗和总谐波失真的标准谱图;监测AEM水电解膜电极运行,发生性能变化后进入诊断模式,输入载波,进行电化学交流阻抗测试的同时进行总谐波失真测试,对输出的电化学交流阻抗信号进行傅里叶变换处理,得到电化学交流阻抗谱;对输出的谐波信号进行处理,得到总谐波失真谱;根据总谐波失真谱,结合电化学交流阻抗谱,与步骤一得到的标准谱图比较,识别AEM水电解膜电极失效类型。本发明能有效诊断AEM水电解膜电极发生温度变化、电解液计量变化以及阴阳极压力变化的失效模式。