Resumen de: US2025270461A1
A process for producing syngas with a H2/CO ratio of from 0.5 to 3.5, comprising:a) generating steam by burning hydrogen and oxygen in the presence of steam in a H2 burner,b) quenching the effluents from step a);c) conducting an electrolysis on steam from step b) in a solid oxide electrolytic cell (SOEC) thereby obtaining hydrogen and oxygen,d) cooling wet hydrogen gas coming from step c) and removing water by condensation;e) carrying out a reverse water gas shift reaction with hydrogen gas coming from step d) with CO2, coming from an external source, thereby obtaining syn gas;f) cooling wet syngas coming from step e) and removing water by condensation thereby obtaining dry syngas.
Resumen de: US2025270717A1
Disclosed herein is a method for producing a platinum (Pt) decorated single-layer transition metal dichalcogenide (TMD) composite. The method includes steps of, (a) mixing single-layer TMD nanosheets with a reducing agent, K2PtCl4, and water to form a mixture, wherein the reducing agent and the K2PtCl4 are present in a molar ratio of 3:2 in the mixture; and (b) irradiating the mixture of step (a) for about 0.1-2 hrs to allow the growth of Pt nanoparticles on the single-layer TMD nanosheets thereby forming the Pt decorated single-layer TMD composite. Also disclosed herein is a method of producing hydrogen from an aqueous solution. The method includes electrolyzing the aqueous solution in an electrochemical cell characterizing in having an electrode made from the present Pt decorated single-layer TMD composite.
Resumen de: US2025270721A1
The invention provides a high-capacity, dry-charged, ready-for-instant-activation-by-adding-water, recyclable and safe electrochemical device and a method for producing hydrogen and electrical energy on demand, based on electrochemical interactions of magnesium, water and sulfuric acid, with an automatic control of the electrolyte's temperature, acidity and level inside the device.
Resumen de: US2025270710A1
A water electrolysis system includes: a water electrolysis device for electrolyzing water; a gas-liquid separator for performing gas-liquid separation of a mixed fluid of hydrogen gas and water, the mixed fluid being led out from the water electrolysis device; a dehumidifier for dehumidifying the hydrogen gas separated from the mixed fluid by the gas-liquid separator; a delivery path for delivering the hydrogen gas dehumidified by the dehumidifier; a humidifier for humidifying the hydrogen gas delivered through the delivery path; and a compression device for compressing the hydrogen gas humidified by the humidifier.
Resumen de: US2025270124A1
A process for treating waste materials and generating electrical power from simultaneously comprising reacting the waste materials during a reaction with fuel, oxygen and water, and then oxidizing the gaseous reaction product of those materials along with fuel, oxygen and water. In one embodiment the process further comprises the steps of electrolyzing the water exiting the process to produce hydrogen and oxygen, purifying both the hydrogen and oxygen streams, and then feeding the purified hydrogen and oxygen to hydrogen fuel cells to generate power.
Resumen de: AU2025217260A1
Embodiments of the invention relate to systems and methods for producing hydrogen gas and/or liquid fuels using electrolysis. Embodiments of the invention relate to systems and methods for producing hydrogen gas and/or liquid fuels using electrolysis. ug u g m b o d i m e n t s o f t h e i n v e n t i o n r e l a t e t o s y s t e m s a n d m e t h o d s f o r p r o d u c i n g h y d r o g e n g a s a n d o r l i q u i d f u e l s u s i n g e l e c t r o l y s i s
Resumen de: US2025270722A1
Methods are for storing electricity and producing liquefied natural gas (LNG) or synthetic natural (SNG) and using carbon dioxide and for producing electricity, natural gas (NG) or SNG. The methods involve, starting from a water flow, producing an oxygen gas flow and a hydrogen gas flow by electrolysis in an electrolytic cell. A first hydrogen gas flow portion and a second hydrogen gas flow portion are obtained. The first hydrogen gas flow portion is allocated to a methanation step in the presence of carbon dioxide gas. A condensed recirculation water vapor flow is obtained to be allocated to the methanation step and performing methanation. The second hydrogen gas flow portion is allocated to a cooling and liquefaction step. A liquid hydrogen flow is obtained, which is stored in a liquid hydrogen tank.
Resumen de: US2025270151A1
A plant, such as a hydrocarbon plant, or synfuels plant, is provided, with effective use of various streams, in particular carbon dioxide and hydrogen. A method for producing a product stream, such as a hydrocarbon product stream, is also provided. The plant and method of the present invention provide overall better utilization of carbon dioxide and hydrogen, while avoiding build-up of inert components.
Resumen de: US2025270723A1
The invention relates to an electrolyser for generating hydrogen (H2) and oxygen (O2) as product gases, said electrolyser including an electrolysis module and a gas separator which is designed for phase separation of the product gas from water, the electrolysis module being connected to the gas separator via a product flow line for the product gas, and a return line, which connects the gas separator to the electrolysis module, being provided for the separated water. The gas separator is designed and positioned at a height difference (Δh) above the electrolysis module in such a way that, in the event of a standstill, the electrolysis module can be automatically flooded with water, driven solely by the height difference (Δh). The invention also relates to a method for operating an electrolyser including an electrolysis module, wherein, in a standstill mode, the electrolysis current is stopped, and a safety deactivation is initiated.
Resumen de: US2025270117A1
A water processing system includes an ultrafiltration membrane device (UF membrane device), a reverse osmosis membrane device (RO membrane device), an electric deionization device (EDI device), and an information processing device (edge computer). The information processing device controls operations of the ultrafiltration membrane device, the reverse osmosis membrane device, and the electric deionization device based on information on a water electrolysis device that obtains hydrogen by subjecting water to electrolysis. Water that is processed by the electric deionization device is supplied to the water electrolysis device. The water electrolysis device is able to obtain hydrogen by subjecting supplied water to electrolysis.
Resumen de: US2025273961A1
A carbon-free energy supply system generates hydrogen from electricity generated by a floating offshore photovoltaic power generation plant, synthesizes energy carriers using the hydrogen as a raw material, stores the energy carriers, converts the energy carriers into a predetermined energy form to supply the energy to each of the supply destination facilities. The floating offshore plant is composed of multiple photovoltaic panels, each of which is substantially hexagonal in plan view, by connecting the photovoltaic panels in a honeycomb structure in plan view. Each photovoltaic panel functions as a floating body, panel housings of the adjacent photovoltaic panels are capable of swinging relative to each other in a vertical direction, and each photovoltaic panel can be submerged and floated to a predetermined depth by pouring water into and draining water from the panel housing.
Resumen de: US2025270123A1
A process for treating PFAS containing waste materials comprising vaporizing the PFAS containing waste materials during a reaction with fuel, oxygen and water, and then oxidizing the gaseous reaction product of those materials along with fuel, oxygen and water to break the fluorine bonds and oxidize the remaining components to carbon dioxide and water. In one embodiment the process further comprises the steps of electrolyzing the water exiting the process to produce hydrogen and oxygen, purifying both the hydrogen and oxygen streams, and then feeding the purified hydrogen and oxygen to hydrogen fuel cells to generate power.
Resumen de: WO2024086793A1
The present disclosure provides a catalyst, methods of manufacturing the catalyst, and methods for using the catalyst for ammonia decomposition to produce hydrogen and nitrogen. The catalyst may comprise an electrically conductive support with a layer of one or more metal oxides adjacent to the support and at least one active metal adjacent to the layer. Methods are disclosed for deposition of metal oxide and active metal, drying and heat treatment. The method of using the catalyst may comprise bringing ammonia in contact with the catalyst in a reactor. The catalyst may be configured to be heated to a target temperature in less than about 60 minutes, by passing an electrical current through the catalyst. The method of using the catalyst may comprise bringing the catalyst in contact with ammonia at about 450 to 700 °C, to generate a reformate stream with a conversion efficiency of greater than about 70%.
Resumen de: EP4606931A1
The present disclosure relates to a hydrogen production control system and method, and a storage medium. The hydrogen production control system includes a safety controller, a first valve and a second valve respectively connected to the safety controller, a hydrogen-production controller, a third valve and a fourth valve respectively connected to the hydrogen-production controller, an oxygen-side gas-liquid separation apparatus respectively in communication with the first valve and the third valve, and a hydrogen-side gas-liquid separation apparatus respectively in communication with the second valve and the fourth valve, where the hydrogen-production controller is configured to control a pressure in the oxygen-side gas-liquid separation apparatus through the third valve, and control a liquid level in the hydrogen-side gas-liquid separation apparatus through the fourth valve; and the safety controller is configured to: when a hydrogen production parameter is greater than or equal to a preset parameter alarm threshold, adjust the pressure in the oxygen-side gas-liquid separation apparatus through the first valve, and/or adjust the liquid level in the hydrogen-side gas-liquid separation apparatus through the second valve. In this way, system safety is effectively ensured, and production efficiency is improved.
Resumen de: US2024194916A1
A hydrocarbon feed stream is exposed to heat in an absence of oxygen to the convert the hydrocarbon feed stream into a solids stream and a gas stream. The gas stream is separated into an exhaust gas stream and hydrogen. The carbon is separated from the solids stream as a carbon stream. Electrolysis is performed on a water stream to produce an oxygen stream and hydrogen. The oxygen and a portion of the carbon are combined to generate power and a carbon dioxide stream. At least a portion of the carbon stream, cement, and water are mixed to form a concrete mixture. The concrete mixture can be used to produce ready-mix concrete and precast concrete. Carbon dioxide used for curing the concrete can be sourced from the carbon dioxide stream produced by power generation.
Resumen de: GB2638621A
A hydrogen production facility 10 and associated method of use is disclosed, comprising a plurality of electrolyser stacks 12. The stacks 12 are for electrolyzing water, generating a hydrogen-aqueous solution mixture. A hydrogen separator 2 arrangement is described for producing a flow of hydrogen from the hydrogen-aqueous solution mixture. The hydrogen separator 2 arrangement comprises a plurality of first stage hydrogen collector separators 20,22, where the first stage hydrogen collector separators are fluidly coupled to a respective sub-set of the plurality of electrolyser stacks. The plurality of first stage hydrogen collector separators 20,22 are also fluidly coupled to a downstream hydrogen buffer vessel 28. The hydrogen separator 2 arrangement may comprise one or more hydrogen coalescing devices 16. A pressure balancing line 24 can also be provided between oxygen 22 and hydrogen separators 20 - it may also extend between hydrogen 28 and oxygen buffer 30 vessels.
Resumen de: US2024133066A1
An electrolysis cell system includes a cathode portion configured to output a cathode exhaust stream, an anode portion configured to output an anode exhaust stream, a sensor configured to detect a concentration in an exhaust stream and to output sensor data, wherein the sensor is either a hydrogen concentration sensor configured to detect a hydrogen concentration in the cathode exhaust stream or a water concentration sensor configured to detect a water concentration of the anode exhaust stream, and a controller. The controller is configured to receive the sensor data from the sensor and, based on the sensor data, control at least one of (a) an air pressure adjustment device to adjust a pressure of air entering the anode portion or (b) a steam pressure adjustment device to adjust a pressure of steam entering the cathode portion.
Resumen de: US2024133063A1
An electrolyzer system includes a vaporizer configured to store a first volume of liquid water and to vaporize water to humidify a cathode inlet stream of an electrolyzer cell module, a cold water tank positioned at a height greater than that of the first volume of liquid water and configured to store a second volume of water, and a valve configured to open and close. The water from the cold water tank is allowed to flow through the valve into the vaporizer when the valve is open.
Resumen de: GB2638622A
A hydrogen production facility 10 and associated method of use is disclosed, comprising a plurality of electrolyser stacks 12. The stacks 12 are for electrolyzing water, generating a hydrogen-aqueous solution mixture. A hydrogen separator 2 arrangement is described for producing a flow of hydrogen from the hydrogen-aqueous solution mixture. The hydrogen separator 2 arrangement comprises a plurality of first stage hydrogen collector separators 20,22, where the first stage hydrogen collector separators are fluidly coupled to a respective sub-set of the plurality of electrolyser stacks. The plurality of first stage hydrogen collector separators 20,22 are also fluidly coupled to a downstream hydrogen buffer vessel 28. The hydrogen separator 2 arrangement may comprise one or more hydrogen coalescing devices 16. A pressure balancing line 24 can also be provided between oxygen 22 and hydrogen separators 20 - it may also extend between hydrogen 28 and oxygen buffer 30 vessels.
Resumen de: GB2638623A
A hydrogen production facility 10 and associated method of use is disclosed, comprising a plurality of electrolyser stacks 12. The stacks 12 are for electrolyzing water, generating a hydrogen-aqueous solution mixture. A hydrogen separator 2 arrangement is described for producing a flow of hydrogen from the hydrogen-aqueous solution mixture. The hydrogen separator 2 arrangement comprises a plurality of first stage hydrogen collector separators 20,22, where the first stage hydrogen collector separators are fluidly coupled to a respective sub-set of the plurality of electrolyser stacks. The plurality of first stage hydrogen collector separators 20,22 are also fluidly coupled to a downstream hydrogen buffer vessel 28. The hydrogen separator 2 arrangement may comprise one or more hydrogen coalescing devices 16. A pressure balancing line 24 can also be provided between oxygen 22 and hydrogen separators 20 - it may also extend between hydrogen 28 and oxygen buffer 30 vessels.
Resumen de: JP2023106855A
To provide a hydrogen system operation planning device which can accurately create an operation plan that achieves an efficient operation in a hydrogen system.SOLUTION: A hydrogen system operation planning device 200 that plans an operation of a hydrogen system comprising a hydrogen manufacturing deice for manufacturing hydrogen by using electric power, includes: a classification part 210 into which a DR command related to a demand of the power in the hydrogen system is input, and which classifies the input DR command into a first DR group and a second DR group having a priority lower than that of the first DR group; a first plan part 220 that creates a first operation plan so as to reflect the DR command classified into the first DR group; and a second plan part 230 that creates a second operation plan by reflecting contents of the DR command classified into the second DR group upon the first operation plan so that the command of the DR command classified into the first DR group is more prioritized than the content of the DR command classified into the second DR group.SELECTED DRAWING: Figure 2
Resumen de: US2023272543A1
A modular system for hydrogen generation includes a plurality of cores and a hub. Each core includes an electrolyzer and a power supply. The power supply is operable to manage electrical power to the electrolyzer of the core and is redundant to the power supply of at least another one of the plurality of cores. The hub includes a water module, a heat exchange module, and a switchgear module. The water module includes a water source in fluid communication with the electrolyzer of each one of the plurality of cores, the heat exchange module includes a heat exchanger in thermal communication with the electrolyzer of each one of the plurality of cores, and the switchgear module includes a switch activatable to electrically isolate the power supply of each one of the plurality of cores.
Resumen de: WO2025171442A1
The invention is directed to methods of electrolysis and cells used for the same. The method comprising generating and delivering a humidified gas stream or liquid water to an electrolysis cell comprising an anode side, a cathode side and an ion permeable membrane located between them wherein the anode side has a first catalytic layer and the cathode side has a second electrolytic layer, contacting the humidified gas stream or liquid water with the first catalytic layer and contacting a portion of the ion- permeable membrane on the cathode side with liquid water, applying a voltage such that oxygen gas is generated at the anode and hydrogen gas is generated at the cathode. The invention is also related to an electrolytic cell for performing the methods and a kit that allows for retrofitting existing cells to perform the methods.
Resumen de: WO2025173297A1
A water splitting device for generating hydrogen when irradiated with light, said water splitting device comprising: an electrolytic bath that is filled with an electrolytic solution; and a water splitting cell that is immersed in the electrolytic solution and comprises a laminate in which an anode, a hole transport layer, a Perovskite battery cell, an electron transport layer, and a cathode have been laminated in the given order, and an electrically insulating protective material which covers the outer periphery of the laminate.
Nº publicación: US2025263844A1 21/08/2025
Solicitante:
OHMIUM INT INC [US]
Ohmium International, Inc
Resumen de: US2025263844A1
A system for hydrogen recovery includes a dryer having an inlet that may be fluidly connected to a hydrogen outlet of a hydrogen generator, a hydrogen using device having an inlet fluidly connected to a dry hydrogen outlet of the dryer, and one or more conduits fluidly connecting a wet hydrogen outlet from the dryer and an impure hydrogen exhaust outlet of the hydrogen using device to the inlet of the dryer.