Resumen de: CN120569516A
The invention provides an electrolytic cell system (10). The electrolytic cell system comprises a heat storage unit (14) and an electrolytic cell (16). The heat storage unit (14) comprises at least one heat source feed inlet. The electrolytic cell (16) comprises at least one electrolytic cell cell (20), a steam inlet and at least one exhaust gas outlet. The exhaust outlet is connected to the heat source feed inlet to heat the heat storage unit (14). The heat storage unit (14) is configured to use its stored heat to generate steam for one of feeding into the steam inlet at a time and generating electricity or both feeding into the steam inlet at the same time and generating electricity. The invention also provides a system comprising an intermittent or variable power source (12) and an electrolytic cell system (10) as defined above. The intermittent or variable power source (12) may be configured to simultaneously or separately power the electrolysis cell (16) and heat the heat storage unit (14) via a heating element.
Resumen de: AU2024222987A1
A system, comprising: an electrolyzer having a plurality of electrolysis cells arranged in a cell stack, wherein the electrolysis cells are electrically connected in series and grouped into two or more cell groups, each cell group having an electrical contact at either end; an electrical circuit having one or more switches, each switch coupled between the electrical contacts of a respective one of the cell groups and configured to selectively disconnect the cell group from the cell stack by electrically bypassing the cell group via a lower resistance path, to thereby vary the number of active electrolysis cells in the cell stack; and a controller configured to determine the number of active electrolysis cells based on a variable amount of direct current (DC) electrical energy supplied to the cell stack by an electrical energy source, and to control the one or more switches based on the determination.
Resumen de: WO2026028848A1
In a hydrogen boiler (3), hydrogen gas and oxygen gas supplied from a water electrolysis device (2), which generates the hydrogen gas and the oxygen gas by electrolyzing water, are combusted in a combustion chamber of the hydrogen boiler (3), and a water pipe of the hydrogen boiler (3) is heated, thus generating water vapor.
Resumen de: AU2024291792A1
The disclosure concerns a process of carbon oxides-free hydrogen production is disclosed. The process comprises the following steps: - heating a gas stream of a reacting compound including hydrogen atoms in absence of oxidizing agents, to thermally decompose the reacting compound into smaller product compounds, including hydrogen molecules, obtaining a stream of decomposition product compounds; - separating hydrogen molecules from other product compounds of the stream of decomposition product compounds; - reacting a portion of the stream of separated hydrogen molecules with a stream of an oxidizing agent, in particular oxygen or air, to obtain combustion product compounds, including steam and heat, in a stream of combustion product compounds; - providing heat obtained in the previous step to the step of heating the reacting compound; and wherein the process can comprise a step of - recovering energy from the stream of decomposition product compounds and/or from the stream of combustion product compounds. Additionally, a system of hydrogen production is also disclosed, the system being configured to operate according to the above process.
Resumen de: CN116439627A
The invention is applicable to the technical field of cleaning appliances, and discloses an integrated water tank capable of cleaning and separating, which comprises a clean water tank, a sewage tank and a water tank cover, the clean water tank contains and outputs clean water to a cleaning tool, the top wall is provided with a water outlet, and the inner wall of the bottom wall is connected with a water pumping joint; the sewage tank collects sewage output by the cleaning tool, the peripheral wall and the bottom wall of the sewage tank are closed, and only the top is open; the water tank cover can cover the clear water tank and the sewage tank from the top at the same time, a clear water outlet and a sewage inlet are formed in the water tank cover, the water tank cover is directly or indirectly connected with a water pumping pipe which is arranged in the clear water tank and communicated with the clear water outlet, and the other end of the water pumping pipe is communicated with a water pumping connector. The clean water tank and the sewage tank of the water tank can be detached independently, and the whole water tank is convenient to assemble and maintain; the clear water outlet and the sewage inlet arranged on the water tank cover are far away from the water tank electricity-taking interface, so that short circuit of the electricity-taking interface caused by water tank leakage can be avoided.
Resumen de: WO2025028379A1
Provided is an ammonia decomposition catalyst that has a high ammonia decomposition activity even at a low reaction temperature and a low reaction pressure, and has stable catalyst characteristics even when repeatedly used in reactions after being exposed to water or the atmosphere. A barium nitride according to the present invention is represented by general formula (1). (1): BaAN2-x (In general formula (1), A is at least one type of element selected from the group consisting of Si, Fe, Ni, Mo, and Zr, and x represents a numerical value represented by 0≤x<2.0.)
Resumen de: MX2025009259A
A hydrogen generation system includes: a direct current (DC) power supply providing a driver signal, a reactive circuit coupled to the power supply and configured to generate a pulse drive signal from the driver signal, at least one reaction chamber coupled to the reactive circuit and receiving the pulse drive signal wherein the chamber is configured to generate hydrogen from feedstock material utilizing the pulse drive signal, a gas analyzer coupled to the at least one reaction chamber and configured to detect the generated hydrogen, and a control unit coupled to the reactive circuit and to the gas analyzer and configured to control the reactive circuit based on the detected hydrogen. The reaction chamber includes a plurality of positively charged elements and a plurality of negatively charged elements. The elements are composed of non-dis similar metallic material.
Resumen de: AU2024398260A1
Provided according to exemplary embodiments of the present invention is an ammonia decomposition system capable of minimizing the generation of iron nitride, which is a by-product.
Resumen de: WO2026032578A1
A method for producing carbon monoxide is specified. The method comprises electrochemical desorption of carbon dioxide and oxygen from a solution containing a metal hydrogen carbonate and forming carbon monoxide from the carbon dioxide. The carbon monoxide produced can be used in a method for forming syngas.
Resumen de: US20260043151A1
A method of operating an electrolyzer system includes providing steam to a stack of electrolyzer cells through a steam filter, electrolyzing the steam into a hydrogen product in the stack of electrolyzer cells, receiving data from one or more sensors indicating that the filter requires cleaning or replacement, and cleaning or replacing the steam filter in response to the receiving the data from the one or more sensors indicating that the steam filter requires cleaning or replacement.
Resumen de: US20260043160A1
This control device is for a hydrogen production facility and comprises: a plurality of electrolysis cells for electrolyzing water or steam; and a plurality of rectifiers for supplying DC power to each of the plurality of electrolysis cells. The control device is provided with: a degradation coefficient acquisition unit configured to acquire a plurality of degradation coefficients indicating the degrees of deterioration of the respective electrolysis cells, an individual necessary current calculation unit configured to calculate, on the basis of a total necessary current corresponding to a hydrogen generation volume required for the hydrogen production facility and the plurality of degradation coefficients, a plurality of individual necessary currents indicating necessary currents required for the electrolysis cells; and a control unit configured to control the respective rectifiers on the basis of the plurality of individual necessary currents.
Resumen de: US20260043159A1
A solid oxide electrolyzer cell (SOEC) includes a solid oxide electrolyte, a fuel-side electrode disposed on a fuel side of the electrolyte, and an air-side electrode disposed on an air side of the electrolyte. The air-side electrode includes a barrier layer disposed on the air side of the electrolyte and including a first doped ceria material, and a functional layer disposed on the barrier layer and including an electrically conductive material and a second doped ceria material.
Resumen de: US20260043158A1
An electrolytic cell and an anion-exchange conductive hollow fiber tube matrix thereof are disclosed. The anion-exchange conductive hollow fiber tube matrix includes a plurality of conductive hollow fiber tubes arranged adjacent to each other in a matrix. The conductive hollow fiber tubes each have a diffusion surface and two opposite ends defined as an inlet and an outlet. An anode and a cathode of the electrolytic cell are disposed adjacent to the diffusion surface. Water in an electrolysis tank flows into the conductive hollow fiber tubes from the inlet, water molecules enter the cathode from the diffusion surface and decompose to produce hydrogen and hydroxide ions, the hydrogen is discharged from the cathode, the hydroxide ions return to the conductive hollow fiber tubes from the diffusion surface and then enter the anode from the diffusion surface to produce oxygen, the oxygen is discharged from a surface of the anode.
Resumen de: US20260043154A1
An alkaline water electrolysis apparatus includes: a separation membrane including a first main surface and a second main surface opposite to the first main surface; a first electrode including a third main surface and a fourth main surface opposite to the third main surface, the third main surface being provided to face the first main surface of the separation membrane; and a first bipolar plate including a fifth main surface, the fifth main surface being provided in contact with the fourth main surface of the first electrode, wherein the first electrode consists of a first metal porous body having a three-dimensional mesh structure.
Resumen de: US20260043150A1
A photocatalytic cell of the disclosure is installed in an inclined manner at an angle of 5° or more and 45° or less with respect to a horizontal plane. The photocatalytic cell includes: a translucent member; an electrolytic solution; a photocatalytic sheet including photocatalytic particles; an injection port through which the electrolytic solution is injected into an inside of the photocatalytic cell; a discharge port through which the electrolytic solution is discharged to an outside of the photocatalytic cell; and an exhaust port through which gas inside the photocatalytic cell is discharged, at least a part of the photocatalytic sheet is immersed in the electrolytic solution, a position of the exhaust port is higher than a position of the injection port, a gap between a surface of the translucent member and a surface of the photocatalytic sheet is 5 mm or more and 50 mm or less in width, and the injection port and the discharge port allow the electrolytic solution to flow from an upper part toward a lower part in the gap between the translucent member and the photocatalytic sheet.
Resumen de: AU2026200498A1
A power generator is described that provides at least one of electrical and thermal power comprising (i) at least one reaction cell for reactions involving atomic hydrogen hydrogen products identifiable by unique analytical and spectroscopic signatures, (ii) a molten metal injection system comprising at least one pump such as an electromagnetic pump 5 that provides a molten metal stream to the reaction cell and at least one reservoir that receives the molten metal stream, and (iii) an ignition system comprising an electrical power source that provides low-voltage, high-current electrical energy to the at least one steam of molten metal to ignite a plasma to initiate rapid kinetics of the reaction and an energy gain. In some embodiments, the power generator may comprise: (v) a source of H2 and O2 supplied to the 10 plasma, (vi) a molten metal recovery system, and (vii) a power converter capable of (a) converting the high-power light output from a blackbody radiator of the cell into electricity using concentrator thermophotovoltaic cells or (b) converting the energetic plasma into electricity using a magnetohydrodynamic converter. an a n
Resumen de: AU2024396946A1
According to exemplary embodiments of the present invention, a hydrogen production system is provided. The present invention comprises: a hydrogen generation unit configured to receive reduced iron from a reduced iron generation unit configured to generate reduced iron by reducing powdered iron ore in a reducing gas atmosphere, and to generate hydrogen from ammonia by bringing the reduced iron into contact with the ammonia; and a regeneration unit configured to receive the reduced iron from the hydrogen generation unit and to regenerate the reduced iron by reducing the reduced iron in a hydrogen gas atmosphere. According to other exemplary embodiments of the present invention, a method for producing hydrogen is provided.
Resumen de: WO2026034402A1
This electrolytic cell comprises an element provided with: an anode chamber provided with an anode; a cathode chamber provided with a cathode; a conductive partition wall provided between the anode chamber and the cathode chamber; and an outer frame that borders the conductive partition wall. The electrolytic cell is stacked with a gasket and a diaphragm interposed between cells. Sealing of an electrolytic solution is achieved by applying surface pressure between the gasket and the diaphragm and between the gasket and the outer frame. The contact ratio between the diaphragm and a first electrode, which is at least one of the anode and the cathode, is 15%-60%, and a region in which the local stress between the diaphragm and the first electrode is 0.1 MPa or more is 5% or less.
Resumen de: WO2026035442A1
A system includes at least one electrochemical device including a proton exchange membrane situated between an anode and a cathode. An oxygen separator is fluidly connected to an inlet to the anode and a hydrogen separator is fluidly connected to an outlet from the cathode. A separator tank fluidly interconnects an outlet from the hydrogen separator to an inlet to the oxygen separator.
Resumen de: WO2026033985A1
Provided is a hydrogen production system (40) which comprises: an exhaust heat reception unit (41) that receives exhaust heat generated by an external exhaust heat source (11); a water vapor generation unit (42) that generates water vapor by heating water by means of the exhaust heat received by the exhaust heat reception unit (41); a cell stack (43) that electrolyzes the water vapor generated by the water vapor generation unit (42) so as to generate hydrogen; and a replenishment unit (44) that, when the amount of exhaust heat is insufficient with respect to the amount necessary for generating the required amount of water vapor, replenishes water, water vapor, or the water vapor generation unit (42) with heat, or replenishes the cell stack (43) with water vapor from an external water vapor supply source (95).
Resumen de: AU2024357053A1
Provided is a control device including: a step in which a current command value regarding current to be applied to an electrolytic stack is determined; and a step in which pure-water adjustment amount command values for adjusting the pressure or/and flow rate of water to be supplied to the electrolytic stack are determined on the basis of the current command value. The control device further includes a step A in which, when the current command value is changed from a first current command value (current command value c1) to a second current command value (current command value c2), which is a different value, and the pure-water adjustment amount command value is changed from a first pure-water adjustment amount command value (pure-water adjustment amount command value w1) to a second pure-water adjustment amount command value (pure-water adjustment amount command value w2), which is a different value, measured values of the pressure or/and flow rate are caused to reach the second pure-water adjustment amount command value from the first pure-water adjustment amount command value before a measured value of current applied from a power converter to the electrolytic stack reaches the second current command value from the first current command value.
Resumen de: AU2024300028A1
The compression arrangement comprises a hydrogen compressor and a return circuit having an inlet, which is fluidly coupled with the discharge side of the centrifugal compressor, and an outlet, which is fluidly coupled with the suction side of the centrifugal compressor. A head-loss control valve is positioned in the return circuit. The head-loss control valve is adapted to generate a controlled head loss in the return circuit when the compressor operates at a flowrate below the surge control line.
Resumen de: WO2024208792A1
A methanol plant and a process for the production of methanol is provided. A hydrogen recovery section receives off-gas stream from the methanol synthesis section and outputs a hydrogen-rich stream, which is recycled upstream the methanol synthesis section.
Resumen de: CN120981421A
A hydrogen production system comprising: a first electrode having an electrocatalyst, a second electrode having an electron donor material comprising a plurality of active sites, the second electrode configured to release electrons from the active sites within a predetermined working potential range below a working potential triggering an oxygen evolution reaction; a first electrolyte in contact with the first and second electrodes, the electrolyte being a source of hydrogen protons; and a power source configured to provide the system with the predetermined operating potential range to release electrons from the second electrode and transfer electrons to the first electrode such that hydrogen protons combine with the electrons to produce hydrogen gas.
Nº publicación: EP4692424A1 11/02/2026
Solicitante:
UNIV KYUSHU NAT UNIV CORP [JP]
DLR DEUTSCHES ZENTRUM FUER LUFT UND RAUMFAHRT E V [DE]
Kyushu University, National University Corporation,
DLR Deutsches Zentrum f\u00FCr Luft- und Raumfahrt e.V
Resumen de: EP4692424A1
It is an object of the present invention to provide a steam electrolysis device and a steam electrolysis method, which have high energy efficiency. The present invention relates to: a steam electrolysis device, comprising an anode electrode chamber, a cathode electrode chamber, and an ion conductor disposed between these electrode chambers, wherein steam in an amount more than twice the amount of hydrogen generated is supplied to at least one selected from the anode electrode chamber and the cathode electrode chamber, and 50% or less of the supplied steam is electrolyzed; and a steam electrolysis method using the steam electrolysis device.