Resumen de: CN120138703A
本发明属于催化剂制备技术领域,涉及清洁能源的高效制备,具体涉及利用稀土元素形成的二元合金催化剂作用于乙醇辅助下的节能制氢体系。本发明采用湿化学合成法,将钯与镧的金属前驱体以及六羰基钼与正辛酸溶剂均匀混合,油浴反应一段时间后,分离沉淀并依次洗涤、干燥,即可获得二元合金催化剂。随后我们在H型电解槽中探究了乙醇对传统电解水制氢体系的改善和促进作用,证明了乙醇辅助制氢为高效节能的制氢方式。本发明所述的催化剂制备方法简单,步骤少,操作简便。相比于Pd金属烯催化剂和商业Pd黑有着更为优异的催化活性和稳定性。所述的制氢方式更为高效,极大降低了能耗。
Resumen de: CN120138688A
本发明公开了一种电解水析氢用泡沫镍表面原位生长铜纳米颗粒构筑三维多孔自支撑电极及其制备方法。本发明泡沫镍表面原位生长铜纳米颗粒构筑三维多孔自支撑电极的制备方法,包括如下步骤:以泡沫镍为工作电极,以铜盐、氯盐、无机酸和去离子水组成的混合溶液为电解液,采用计时电量法进行电沉积,得到所述泡沫镍表面原位生长铜纳米颗粒构筑三维多孔自支撑电极。本发明通过以氢气泡为动态模板的一步电沉积法制备无需粘合剂的自支撑电极,无贵金属参与,可有效解决传统粉末状催化剂使用Nafion溶液等导电性较差的聚合物粘合剂而带来的阻断活性位点、降低电导率或抑制气体传输等问题。本发明所制备的电极具有优异的HER性能和良好的稳定性。
Resumen de: CN120138700A
本发明公开了一种金属单原子催化剂及其制备方法与应用,属于电催化技术领域;本发明通过在钙钛矿钴酸锶氧化物中掺杂金属元素并将钙钛矿钴酸锶氧化物置于高温高压环境下水热处理转化为羟基氧化钴,使得掺杂的金属元素从钙钛矿钴酸锶氧化物晶格中脱离出来并单分散锚定在所形成的层状羟基氧化钴表面,从而制得单原子催化剂;本发明解决了现有的单原子催化剂工艺复杂、成本高昂、金属单原子自发聚集的问题,制得的金属单原子催化剂具有高分散性和稳定性,可以实现单原子在特定活性位点的精准锚定,在电催化领域具有广阔的应用前景。
Resumen de: CN120138696A
本发明涉及纳米材料制备和应用技术领域,尤其涉及一种过渡金属硒化物催化剂及其制备方法与应用,包括:首先将金属镍盐、铁盐、尿素和氟化铵溶解在去离子水中,通过水热法合成镍铁层状氢氧化物纳米片前驱体;其次采用硒化反应制得铁掺杂硒化镍催化剂;利用铁掺杂策略调控硒化镍的电子结构,提高催化性能。制备的铁掺杂硒化镍催化剂用于析氢反应和硫离子氧化反应时具有良好的催化活性。在两电极硫离子氧化耦合制氢电解池中,仅需电压0.439V即可输出电流密度10mAcm‑2,实现高效节能制氢和硫离子氧化升级为高附加值单质硫产物的目标。本发明具有制备过程简单可控、原材料价格低廉和易于批量生产等优点,可作为高效的电解水制氢和硫离子氧化反应的催化剂。
Resumen de: CN120138679A
本申请提供一种电解水制氢膜电极及其制备方法、电解槽,属于电解水制氢技术领域,电解水制氢膜电极包括复合阳极层、阴离子交换膜和复合阴极层,其中,复合阳极层包括阳极基底层、第一气体扩散层和阳极催化层。阴离子交换膜,设置于复合阳极层具有阳极催化层的一侧,复合阴极层设置于阴离子交换膜背离复合阳极层的一侧,复合阴极层包括阴极基底层、第二气体扩散层和阴极催化层。本申请实施例提供的电解水制氢膜电极能够消除至少部分部件之间的界面电阻,使得离子传输和气体扩散更加顺畅,提高电解效率。
Resumen de: CN120138693A
本发明属于材料领域,公开了一种用于双功能碱性电解水锰掺杂硫化镍/多孔泡沫镍电极的制备方法。本发明通过两步电沉积的方式,首先对泡沫镍基底进行活化,然后在活化后的多孔泡沫镍基底上电沉积硫化镍并掺杂锰。本发明在多孔泡沫镍上生长的锰掺杂硫化镍纳米结构,构建了可用于双功能电解水的电极,该电极的多孔结构在高电流密度下,能够有效加速传质过程,同时促使反应产生的气泡快速逃逸。此外,硫化镍经过锰的掺杂,优化了电子结构,具有导电性增强、电化学活性面积增大、活性位点充分暴露和中间体吸附优化等特点。本发明的制备方法为实际水电解中高性能电极的制备提供了一种有效的策略。
Resumen de: CN120138709A
本发明涉及一种用于碱性氢气析出反应的掺杂型钕基复合电催化剂及其制备方法与应用。该催化剂以钕氧化物(Nd2O3)为基体材料,通过掺杂磷(P)和钌(Ru),优化了催化剂的电子结构,显著提高了其催化活性和稳定性。催化剂采用简单的水热法和低温磷化处理制备,具有均匀的连续平整的纳米层结构,有利于电子传输和反应活性位点的暴露。在1.0 M KOH电解液中,该催化剂表现出极低的过电位(11.8 mV)和优异的稳定性,显著优于商业Pt/C催化剂和未掺杂的钕氧化物催化剂。本发明的复合电催化剂不仅实现了高效、稳定的碱性氢气析出反应,还为设计高性能非贵金属催化剂提供了新的思路。
Resumen de: CN120143785A
本申请提供一种大规模制氢工厂的故障定位解决方法和系统、计算机可读存储介质,涉及制氢工厂技术领域。方法包括:S1:通过监测在线数据或提取关键特征,进行异常预警;S2:基于异常预警信号,进行故障定位;S3:识别出故障的部件,并进行部件分离;S4:使用故障算法辨识故障类型并定量;S5:进行故障溯源;S6:基于经济影响分析给出最优解决方案;S7:排查隐患。该方法和系统用以异常预警、目标定位、故障诊断并提出处理建议,以实现分析目标分流、算力高效分配。
Resumen de: CN120136734A
本发明提供一种三元有机共晶的制备及其在光催化中的应用。该三元有机共晶P‑TS‑TC的分子式为(Pyrene)0.1(TSB)0.9(TCNB),其中Pyrene为芘,TSB为反式‑1,2‑二苯乙烯,TCNB为1,2,4,5‑苯四乙腈。P‑TS‑TC的制备包括以下步骤:将芘、TSB和TCNB溶于乙腈溶剂中,乙腈溶剂自然挥发后即可得到橙黄色P‑TS‑TC单晶。本发明制备的三元共晶中存在电荷转移态(CT态),导致其光吸收范围相比于三种单体分子芘、TSB和TCNB均有明显红移。同时由于三种单体分子的能级呈梯度排列,能够有效促进P‑TS‑TC中的空穴转移,从而实现对共晶中CT态离域性的调控。相比于二元有机共晶P‑TC和TS‑TC,本发明制备的三元有机共晶P‑TS‑TC具有更长的载流子寿命和更高的光催化分解水制氢性能。
Resumen de: CN120138721A
本发明提供一种用于海水电解制氢的高稳定性复合隔膜及其制备方法,所述复合隔膜包括依次相连的增强层、多孔层及表面强化层;本发明通过采用增强层、多孔层及表面强化层这种结构设计及制备,得到具有高稳定性的海水电解用隔膜,而且该隔膜具有较低的面电阻和较高的强度;通过在表面强化层中添加有金属氧化物,在隔膜形成一层保护膜,有效减少海水对隔膜的腐蚀作用,并且由于金属氧化物的导电性,能够降低隔膜的电阻,提高电解效率;另一方面,通过控制表面强化层中微孔结构的大小,在不影响隔膜离子传导性能的情况下,有效将沉淀物阻隔在隔膜外,提高隔膜耐堵塞性,使隔膜实现在海水电解过程中的长期稳定工作。
Resumen de: CN120138713A
本发明公开一种Cu‑Co(OH)2/CeO2异质结电催化剂的制备方法及其应用,涉及电化学催化技术领域;所述催化剂的制备方法如下:以泡沫镍为工作电极,将其置于由钴盐、铈盐和铜盐按预定比例配制成的混合水溶液中,通过电沉积方法,制得Cu‑Co(OH)2/CeO2异质结电催化剂。其中异质组分间形成界面内建电场加速电子转移,CeO2作为电子受体优化空间电荷分布,促进高价钴的形成从而激活晶格氧,提升OER活性;Cu的掺杂进一步调控d带中心位置,增强中间体*OH的吸附,有利于快速填充晶格氧空位,大幅稳定活性组分结构。二者耦合实现协同优化*OH吸附能和LOM途径,有效提升OER活性和稳定性,大幅降低电解水阳极侧反应能耗,为设计工业非贵金属基OER电极提供思路。
Resumen de: CN120138687A
本发明属于催化剂技术领域,提供了一种木质素基过渡金属氢氧化物的电催化剂及其制备方法与应用。本发明提供的催化剂以木质素磺酸盐及过渡金属盐为原料,以导电材料为载体,通过水热合成实现过渡金属氢氧化物的合成并负载在导电材料上,制得木质素过渡金属氢氧化物的电催化剂。本发明通过木质素磺酸盐的磺酸基团及羧基等结构诱导高价金属活性物质生成,使其具备优异的催化活性和良好的复用性。
Resumen de: CN120138726A
本发明涉及一种用于电解制氢传质系统补水装置,补水系统单元包括膜组件、进、出液主管道、碱液进出泵和分流器,进液主管道输入端与碱液罐连接,进液主管道输出端通过分流器与各个膜组件连接,膜组件侧的碱液口通过第一出液主管道与碱液缓冲罐连接,碱液缓冲罐输出端通过第二出液主管道与碱液罐连接;海水循环单元包括具有海水进液口和海水溢流口的海水槽,膜组件设置在海水槽内;本发明通过巧妙的设计,能够在电解过程中实现对海水的直接淡化,无需额外消耗能量,从而显著降低了制氢过程的整体能耗。通过补水系统单元确保电解液能够高效的进行浓度转化,及时的为电解后的溶液进行补水。
Resumen de: CN120137678A
本发明公开了一种Pickering乳液及其在光催化制氢中的应用,属于Pickering乳液制备技术领域。本发明利用溶胶凝胶法以及水热法制备了具有亲水性质的氮铋共掺杂二氧化钛材料,又将氮铋共掺杂二氧化钛材料与具有疏水性质的羧基化多壁碳纳米管复合,得到的两亲性的氮铋共掺杂二氧化钛复合碳纳米管材料。以氮铋共掺杂二氧化钛复合碳纳米管作为乳化剂,蒸馏水作为水相,正辛醇为油相,利用高速匀浆均质,得到Pickering乳液。利用氮铋共掺杂二氧化钛复合碳纳米管稳定的Pickering乳液光催化产氢体系,与水相、辛醇油相、水‑辛醇非均相相比,其光催化性能显著提升。
Resumen de: CN120138684A
本发明公开了一种水电解制氢用抗逆电流电极,所述电极上设有催化剂涂层,所述催化剂的化学式为(Ni0.8Ti0.05Zr0.05MoxSb0.1‑x)O,其中,0<x<0.1。本发明以Ni为主要活性组分,保证高催化活性。通过引入Zr、Ti、Mo、Sb等多种元素进行高熵化设计,利用高熵效应提升材料的化学稳定性和机械性能。通过调节Mo和Sb的比例,优化电极的催化活性和抗逆向电流能力。
Resumen de: CN120138711A
本发明提供一种双金属磷化物及其制备方法和在电解海水中的应用,所述双金属磷化物的制备方法包括:S1,将镍盐、铁盐及二甲基咪唑加入溶剂中,搅拌,得到前驱液;将前驱液进行溶剂热反应,得到含镍铁的前驱体;其中,所述前驱液中,镍离子和铁离子的总摩尔数与二甲基咪唑的摩尔数之比为1:(0.25~0.75);S2,将含镍铁的前驱体与磷化试剂进行反应,得到双金属磷化物。所述双金属磷化物形貌为纳米片与纳米颗粒的复合体,所述复合体中,纳米颗粒负载在纳米片上。所述的双金属磷化物作为电解池的阳极材料,可以用于直接电解海水制氢。
Resumen de: CN120138708A
本发明公开了一种自支撑钴@钴氧化物核‑壳纳米盘材料的制备方法,所述制备方法包括:(1)将基底材料浸泡在钴盐溶液中;(2)将浸泡后的基底材料进行煅烧,得到负载钴氧化物的基底材料;(3)将负载钴氧化物的基底材料在H2氛围下煅烧还原,得到钴@钴氧化物核‑壳纳米盘材料,记为Co@CoOX。本发明还公开了上述制备方法得到的钴@钴氧化物核‑壳纳米盘材料及其作为HER催化剂的应用。本发明通过简单的制备方法制备得到钴@钴氧化物核‑壳纳米盘材料;且该材料作为电催化剂应用在水解制氢气上表现出优异性能。
Resumen de: DE102023134698A1
Die Erfindung betrifft ein Verfahren zum Herstellen einer Elektrode (10) für die Verwendung bei der alkalischen Elektrolyse von Wasser, das Verfahren umfassend Bereitstellen eines metallischen Substrats (12), Bereitstellen eines Beschichtungswerkstoffes (26), umfassend ein Pulver (28) aus einem Katalysatormaterial (20) und nicht-metallische Partikel (24), und Beschichten zumindest eines Abschnitts des Substrats mit dem Beschichtungswerkstoff. Die Erfindung betrifft auch derart herstellte Elektroden.
Resumen de: US2025187912A1
A catalyst includes a ruthenium metal loaded on a support, wherein the support has a chemical formula of AxB(1-x)Oy. A is an alkaline earth metal, B is aluminum, zinc, cerium, manganese, or a combination thereof, x is 0.05 to 0.50, and y is chemical stoichiometry. The catalyst may further include an auxiliary agent loaded on the support. The catalyst can be used to decompose gaseous ammonia.
Resumen de: WO2025119989A1
The invention concerns a method of electrolysing water using an electrolyser comprising an anode; a cathode and optionally a separator; wherein at least one of the cathode and the separator comprises a substrate and a coating, and the coating comprises 9.5 to 35 wt% chromium; 10 to 75 wt% cobalt; and 10 to 60 wt% of one or more further transition metals and/or one or more non-metallic elements selected from C, P, N and B.
Resumen de: DE102023212354A1
Elektrolysesystem mit einem Stack (1), der einen Anodenraum (2) und einen Kathodenraum (3) aufweist und der dazu eingerichtet ist, Wasser elektrolytisch in Wasserstoff und Sauerstoff aufzuspalten, wobei der Kathodenraum (3) einen Einlass (9) und einen Auslass (10) aufweist. Dem Stack (1) ist ein Gas-Flüssig-Separator (11) zugeordnet, der über eine Ausleitung (12) mit dem Auslass (10) des Kathodenraums (3) verbunden ist und in dem Flüssigkeit von Gas getrennt wird, wobei der Gas-Flüssig-Separator einen Gasauslass (13) zum Abströmen des abgetrennten Gases aufweist. Der Gasauslass (13) mündet in einen zentralen Gas-Flüssig-Separator (25) zur Trennung von Flüssigkeit und Gas.
Resumen de: DE102023212440A1
Die Erfindung betrifft ein Offshore-Elektrolysesystem (100) umfassend eine Windkraftanlage (1) mit einem auf dem Meeresgrund verankerten Turm (19) und mit einer Elektrolyseanlage (5), wobei die Elektrolyseanlage (5) mit einer Versorgungsleitung (11) an die Windkraftanlage (1) angeschlossen ist, und wobei die Elektrolyseanlage (5) einen in einem Container (9) angeordneten Elektrolyseur (13) aufweist, wobei der Container (9) unterhalb des Meeresspiegels (25) angeordnet ist.Die Erfindung betrifft weiterhin ein Verfahren zum Betrieb eines entsprechenden Offshore-Elektrolysesystems. Dabei wird von einem unterhalb des Meeresspiegels (25) angeordneten Elektrolyseur (13) der Elektrolyseanlage (5) Wasser in Wasserstoff (H2) und Sauerstoff zerlegt, wobei der erzeugte Wasserstoff (H2) über eine Produktgasleitung (7) abtransportiert wird.
Resumen de: US2025188621A1
Device for generating hydrogen gas and oxygen gas from water, comprising a case, which forms a hydrolysis chamber designed to contain an amount of water; electrode means that act as a cathode and an anode; and gas-separating means, disposed in the hydrolysis chamber between the cathode and the anode, which comprise a permeable membrane segment suitable for preventing the generated hydrogen gas and oxygen gas from passing through the permeable membrane segment and mixing together, the hydrolysis chamber being divided into a first portion that contains the cathode and a second portion that contains the anode, wherein the first and second chamber portions are in fluid communication with respective pipes for hydrogen gas and oxygen gas. Another object of the invention is a system for the same purpose, comprising at least one device as described above.
Resumen de: US2025188632A1
An electrolytic method of loading hydrogen into a cathode includes placing the cathode and an anode in an electrochemical reaction vessel filled with a solvent, mixing a DC component and an AC component to produce an electrolytic current, and applying an electrolytic current to the cathode. The DC component includes cycling between: a first voltage applied to the cathode for a first period of time, a second voltage applied to the cathode for a second period of time, wherein the second voltage is higher than the first voltage, and wherein the second period of time is shorter than the first period of time. The peak sum of the voltages supplied by the DC component and AC component is higher than the dissociation voltage of the solvent. The AC component is selected based on a local minimum of a Nyquist plot to minimize energy loss while maintaining hydrogen transport.
Nº publicación: US2025188620A1 12/06/2025
Solicitante:
SUNGROW HYDROGEN SCI & TECH CO LTD [CN]
Sungrow Hydrogen Sci. & Tech. Co., Ltd
Resumen de: US2025188620A1
A new energy hydrogen production system and a control method therefor. In the new energy hydrogen production system, a new energy input module supplies power to electrolytic cells by means of a power conversion module; and a control system of the new energy hydrogen production system is used for controlling, according to the power of the new energy input module, the power conversion module to work, such that among N electrolytic cells in an operation state, at least N-1 electrolytic cells work in a preset load range. The preset load range is a corresponding load range having the highest system efficiency in an electrolytic cell working range division result prestored in the control system.