Resumen de: AU2023390125A1
Catalyst ink formulas for the preparation of CCMs are described. The catalyst ink formulas comprise a catalyst, an ionomer, a solvent, and a porogen soluble in the solvent. The catalyst ink formula may also comprise an additive, such as an electron conductive polymer. The anode catalyst coating layer or both the anode and the cathode catalyst coating layers prepared from the catalyst ink formula comprises uniformly distributed nanopores that allow easy gas removal and uniform water feed distribution, which will avoid or reduce the direct energy losses for the electrolyzers. Catalyst coated membranes and methods of making a catalyst coated membranes are also described.
Resumen de: WO2024081935A1
Integrated energy systems, such as for use in producing sodium formate and/or processing sodium formate to generate hydrogen as an energy carrier and that produce few or no carbon emissions, and associated devices and methods are described herein. A representative integrated energy system can include a power plant system having multiple modular nuclear reactors. The nuclear reactors can generate electricity and steam for direct use in a sodium formate process or for use in an electrical power conversion system to generate electricity for use in the sodium formate process or for supply to a power grid. Individual ones of the nuclear reactors can be configured to flexibly generate differing outputs of steam or electricity based on a demand state of the power grid—for example, supplying excess electricity and/or steam to the sodium formate process during off-peak hours.
Resumen de: WO2024081697A1
A carbon-oxygen battery system, including: a Boudouard reactor in fluid communication with an electrochemical cell, wherein the electrochemical cell has a CO/CO2 inlet, a CO/CO2 outlet, and an oxygen outlet, and wherein the CO/CO2 outlet is fluidly connected by a first stream to an inlet of the Boudouard reactor, and wherein the CO/CO2 inlet is fluidly connected by a second stream to an outlet of the Boudouard reactor; and a CO/CO2 tank fluidly connected to at least one of the first stream or the second stream.
Resumen de: EP4603490A1
The purpose of the present invention is to provide a compound capable of producing a polymer having excellent alkali durability, a polymer including the compound as a monomer, an electrolyte membrane having excellent alkali durability using the polymer, and a fuel cell and an electrolysis apparatus using the electrolyte membrane. A compound represented by the following Formula (1) and a polymer including the compound as a monomer. (X<1>-)2Ar<1>(-L<1>-R
Resumen de: EP4604222A1
The present disclosure provides an electrocatalyst layer 20 that is usable in contact with a polyelectrolyte membrane, including catalyst-supporting particles 21, polyelectrolyte 22 containing fluorine atoms, and two or more types of fibrous materials, wherein the catalyst-supporting particles 21 each contain a support and a catalyst supported by the support; the fibrous materials contain at least one type of a conductive fibrous material 23 and at least one type of a non-conductive fibrous material 24; and when a content of the supports is 100 parts by mass, a content of the conductive fibrous material 23 is 5 parts by mass or more and 50 parts by mass or less, and a content of the non-conductive fibrous material 24 is 5 parts by mass or more and 20 parts by mass or less.
Resumen de: WO2024079590A1
Plant (1) for producing polymer electrolyte fuel cells (10), each polymer electrolyte fuel cell (10) comprising an MEA element (11) interposed between a bipolar base plate (12) and a bipolar cover plate (13), said system (1) comprising a deposit line (100) comprising a plurality of units for depositing (20) arranged in series and movement means (200, 500) configured to move an electrolyte layer (14) having two opposite deposit surfaces (14a, 14b) between the units for depositing (20), said plurality of units for depositing (20) comprising: a first deposit unit (30) configured for depositing catalytic electrode layers (15) on at least a portion of each deposit surface (14a, 14b) of the electrolyte layer (14); a second deposit unit (40) configured for depositing on each electrolyte deposit surface (14a, 14b) gas diffusion layers (16) at least on the deposited catalytic electrode layers (15), defining multilayer structures (17); a separation unit (50) configured to separate the multilayer structures (17) from each other to produce MEA elements (11); a movement unit (60) configured to move each produced MEA element (11); said plant (1) comprising an assembly line (400) associated with the deposit line (100) by means of the movement unit (60) and comprising a plurality of assembly units (300) configured to assemble the polymer electrolyte fuel cells (10).
Resumen de: EP4604223A1
A battery system includes an anode circuit (12) configured to urge a flow of anolyte therethrough to an anode side of an electrode and a cathode circuit (16) configured to urge a flow of catholyte therethrough to a cathode side of the electrode. An electric circuit is operably connected to the electrode to utilize electrical energy generated via a chemical reaction between the flow of anolyte and the flow of catholyte at the electrode. The flow of anolyte is driven through the anode circuit (12) by thermal expansion and/or thermal contraction of one or more components of the anode circuit (12). The flow of catholyte is driven through the cathode circuit (16) by thermal expansion and/or thermal contraction of one or more components of the cathode circuit (16).
Resumen de: CN120035497A
The invention relates to a method for laser beam welding two components (1, 2), in which the material of the two components (1, 2) is melted by means of at least one laser beam (LS1, LS2) in order to form at least one weld seam (SN1, SN2), the two components (1, 2) being arranged one above the other with respect to the direction of incidence of the at least one laser beam (LS1, LS2) onto the two components (1, 2).
Resumen de: US2024125259A1
A broadband resonator for a fuel cell compressor is disclosed. The resonator having a resonator insert having a tubular pipe surrounded by a plurality of disc-shaped walls separating the resonator insert receiving chamber into one or more individual resonator chambers. The tubular pipe is positioned eccentrically within a resonator insert receiving chamber. An entrained water removal system is formed in the resonator, preventing entrained water from accumulating in the resonator chambers which would result in an undesirable detuning of the designed amplitude frequency spectrum response.
Resumen de: WO2024056213A1
The present invention relates to a method for detecting a malfunction of a fuel outlet arrangement (16) in a tank system (11) for a fuel cell system (10), having the steps of: determining a transition from increased operation to reduced operation of the tank system (11) with a reduced fuel mass flow from fuel tanks (12, 13, 14) of the tank system (11), determining a pressure build-up gradient in a fuel line arrangement (15) during the reduced operation after a defined time has elapsed since the determined transition to reduced operation, providing a target pressure build-up gradient, performing a comparison between the determined pressure build-up gradient during the reduced operation and the provided target pressure build-up gradient, and detecting a malfunction of the fuel outlet arrangement (16) on the basis of the comparison. The invention furthermore relates to a tank system (11) and a computer program product (23) for carrying out the method, and to a computer-readable storage medium (24) on which such a computer program product (23) is stored.
Resumen de: WO2024078699A1
The disclosure relates to a computer-implemented method for controlling a plurality of fuel cell systems (FCS1, FCS2) for a vehicle, comprising: • - estimating required power needs from the plurality of fuel cell systems (FCS1, FCS2) for a planned trip of the vehicle, and • - in response to determining that a fuel cell system combination including less than all of the plurality of fuel cell systems (FCS1, FCS2) is sufficient to deliver the required power needs for the planned trip: • - estimating a thermal load of the fuel cell system combination for the planned trip and comparing the estimated thermal load with cooling capabilities allocated for the fuel cell system combination, and • - based on the comparison, activating all of the plurality of fuel cell systems (FCS1, FCS2) for the planned trip when the comparison fulfils a first criterion and activating the fuel cell system combination for the planned trip when the comparison fulfils a second criterion. The disclosure also relates to a control unit (110), a propulsion system (1), a vehicle, a computer program and a computer readable medium.
Resumen de: WO2024078724A1
A fuel cell system (100) is disclosed, comprising: - a fuel cell stack (101) configured to react hydrogen and oxygen to produce electric power, - a metal source (110), - an oxidiser furnace (111) configured to react metal supplied from the metal source with water to form metal oxide and generate hydrogen gas, - a hydrogen supply arrangement (125) configured to supply hydrogen gas generated in the oxidiser furnace to fuel cell stack, - a first expander (112) arranged in a conduit (125a) of the hydrogen supply arrangement (125), the first expander being configured to expand a gas mixture from the oxidiser furnace, the gas mixture comprising the hydrogen gas and excess water steam, - a compressor (114) configured to provide compressed air to the fuel cell stack, wherein the compressor is configured to be driven by energy recuperated from the first expander.
Resumen de: WO2024078690A1
A fuel cell system (12) comprising at least one fuel cell (22) and at least one cooling system (24) configured to cool the at least one fuel cell (22). The at least one cooling system (24) comprises at least one fluid intake (16), one or more cooling fans (32) located downstream of the at least one fluid intake (16), and at least one radiator (28) located upstream and/or downstream of the one or more cooling fans (32). The fuel cell system (12) also comprises an exhaust flow passage (20) configured to convey fuel cell exhaust (18) emitted from the at least one fuel cell (22) away from the at least one fuel cell (22), and at least one valve (30) configured to selectively direct an amount of the fuel cell exhaust (18) in the exhaust flow passage (20) into the at least one cooling system (24) via the at least one fluid intake (16) and/or via at least one inlet (20C) located between said one or more cooling fans (32) and said at least one radiator (26).
Resumen de: WO2024079286A1
The present invention relates to a solid oxide cell, such as a solid oxide fuel cell (SOFC) or a solid oxide electrolyser cell (SOEC), containing at least one structural component comprising doped zirconia, which includes more than 80 Vol% of metastable transformable tetragonal zirconia ceramic materials, having a superior resistance to high-temperature isothermal degradation.
Resumen de: CN120497367A
本发明实施例公开一种空冷燃料电池电堆结构,包括电堆本体和设置于所述电堆本体上的散热器模组;所述电堆本体包括数个交替设置的第一极板、第二极板和膜电极,所述膜电极设置于所述第一极板和所述第二极板之间,且所述膜电极分别与所述第一极板、所述第二极板抵接设置;所述第二极板靠近所述膜电极的一侧设置有空气路流道,所述第二极板远离所述空气路流道的一侧内设置有凹槽,所述凹槽内设置有热管,所述热管与所述散热器模组连接。本申请结构简单,拆装方便,便于维护,稳定性较好,经济安全实用,在不改变空冷燃料电池电堆的基础上能够大大提高电堆的散热性能,很好的满足实际使用的需要。
Resumen de: CN120497365A
本发明涉及一种用于燃料电池或电解装置的气体分配装置、包括该气体分配装置的电池封装层叠多个而成的电池堆及包括该电池堆的燃料电池系统,使流入电池结构体的气体沿垂直方向和水平方向流动,从而将气体和热均匀地分配在整个电池,从而可以防止气体仅集中在特定区域,并且减少由热集中引起的损坏,因此提高反应效率。
Resumen de: CN120497361A
本申请属于可逆固体氧化物电池技术领域,尤其涉及一种质子导体型可逆固体氧化物电池的空气电极材料及制备方法和应用;本申请提供的质子导体型可逆固体氧化物电池的空气电极材料是在Fe基钙钛矿材料的B位掺杂Zn得到,其化学式为BaCo0.4Fe0.4‑xZnxZr0.1Y0.1O3,化学式中0<x≤0.2;B位掺杂Zn,增强水合能力、促进H2O吸附解离,增加质子(H+)浓度、促进氧空位与质子(H+)结合形成质子缺陷,并配合Grotthuss机制,加速了空气电极中的质子传输,从而解决了质子导体型可逆固体氧化物电池的空气电极材料的质子电导率较低的技术问题。
Resumen de: CN120497372A
本发明公开一种基于膜计算动态膜结构的质子交换膜燃料电池模型参数辨识方法,属于燃料电池优化领域;该方法包括:1)建立PEMFC数学模型;2)以堆栈输出电压实验值与模型值的绝对误差积分最小为目标优化参数;3)将差分进化算子与膜计算的交流、选择、终止规则结合,构建动态膜计算模型(DMC);4)利用DMC优化PEMFC参数,计算输出电压误差平方和;5)通过DMC迭代搜索,获得使目标函数最小的最优参数组合,并与经典算法对比验证;6)将优化参数应用于实际PEMFC模型。本发明通过动态膜计算优化策略,显著提升参数辨识精度,使模型输出电压与实验数据高度吻合。
Resumen de: FR3159261A1
L’invention porte sur une plaque bipolaire comportant des tôles supérieure et inférieure (10, 20), ayant, le long de la zone active, une zone longitudinale intermédiaire (Zint) où se trouve une alternance longitudinale entre au moins une première région anti-court-circuit (Rsup) et au moins une deuxième région anti-court-circuit (Rinf). Dans la première région anti-court-circuit (Rsup), la tôle inférieure (20) présente : une pluralité de plots inférieurs (25), faisant saillie, suivant une direction opposée à la tôle supérieure (10), vis-à-vis d’un renfoncement intermédiaire inférieur (24) dans lesquels ils sont situés, et présentant des dimensions sensiblement égales suivant deux axes orthogonaux quelconques dans un plan parallèle à la plaque bipolaire ; et une absence de nervures transversales s’étendant dans la zone longitudinale intermédiaire (Zint) en joignant des nervures longitudinales inférieures interne (22i) et externe (22e). Figure pour l’abrégé : Fig.3B
Resumen de: FR3159260A1
L’invention porte sur une plaque bipolaire de cellule électrochimique, comportant des tôles supérieure et inférieure (10, 20), des premier et deuxième collecteurs (2, 3), dans laquelle, dans une première zone intermédiaire s’étendant entre les nervures supérieure (15) et inférieure (25) de premier collecteur d’une part et les nervures supérieure (12) et inférieure (22) externes d’autre part, la tôle conductrice supérieure (10) comporte un renfoncement supérieur (14) dit intermédiaire, et la tôle conductrice inférieure (20) comporte une nervure inférieure (24) dite intermédiaire, superposée et au contact du renfoncement supérieur intermédiaire (14). Figure pour l’abrégé : Fig.2B
Resumen de: FR3159259A1
L’invention porte sur une plaque bipolaire de cellule électrochimique, comportant des tôles supérieure et inférieure (10, 20) dont des nervures définissent, le long des circuits de distribution (7), une zone latérale de contournement (Zc) où se trouve une alternance longitudinale de première partie anti-court-circuit (P1sup) et de deuxième partie anti-court-circuit (P2inf), de sorte que : dans la première partie anti-court-circuit (P1sup), la tôle inférieure (20) comporte une succession longitudinale de nervures internes (25i), respectivement externes (25e), ayant une extrémité opposée fermée non raccordée à la nervure externe (22e), respectivement interne (22i) ;dans la deuxième partie anti-court-circuit (P2inf), la tôle supérieure (10) comporte une succession longitudinale de nervures internes (15i), respectivement externes (15e), ayant une extrémité opposée fermée non raccordée à la nervure externe (12e), respectivement interne (12i). Figure pour l’abrégé : Fig.6A
Resumen de: FR3159262A1
L’invention concerne une entretoise pour dispositif électrochimique à oxyde solide (200), ledit dispositif (200) comprenant : au moins un interconnecteur (102,104), une cellule électrochimique (106) à oxyde solide disposée entre ledit interconnecteur (102,104) et un autre interconnecteur (102;104), etladite entretoise (202), disposée entre lesdits interconnecteurs (102,104), en particulier, autour de ladite cellule (106) ; caractérisée en ce que ladite entretoise (202) : comporte une couche, dit couche principale, réalisée en un matériau composite à matrice céramique, dit matériau CMC, ou en un précurseur dudit matériau CMC, électriquement isolant ; etest en partie, ou en totalité, étanche au gaz. Elle concerne également un dispositif électrochimique à oxyde solide comprenant une telle entretoise. Elle concerne en outre un système électrochimique à oxyde solide comprenant de tels dispositifs électrochimiques. Voir Figure 2a
Resumen de: FR3159263A1
L'invention concerne une installation (10) destinée à la production d'empilements (14) à oxydes solides, qui comporte - une enceinte (12) cylindrique d'axe principal A dans laquelle les empilements (14) sont destinés à être mis en place coaxialement à l'axe principal A, - un premier arbre (22) et un deuxième arbre (24) entre lesquels les empilements (14) sont mis en place, - des éléments chauffants (32) agencés dans l'enceinte (12), caractérisée en ce que l'axe principal A de l'enceinte (12) est horizontal et perpendiculaire à un axe vertical selon la gravité terrestre. Figure pour l’abrégé : Figure 3.
Resumen de: CN120497373A
本发明公开了一种燃料电池微孔层及催化层界面微结构重构方法及系统,涉及燃料电池优化技术领域,本发明通过原子力显微镜扫描微孔层及催化层,获取微孔层与催化层的表面形貌特征并将所有取样点的高度值导出,并进行基准面转换以形成微孔层及催化层的高度矩阵,用高度矩阵完成对微孔层及催化层界面模型的重构,所重构的界面模型不仅能表征不同尺寸微孔层及催化层的微观表面结构特征,而且可以对微孔层和催化层各相组分进行调整,在重构过程中,调整微孔层及催化层的界面模型内的碳球体的大小和数量,孔隙率,以及聚合物的分布,就可以同时获得与实际的微孔层与催化层相一致的界面微结构模型,从而能更好地对燃料电池的结构进行优化和改进。
Nº publicación: CN120497388A 15/08/2025
Solicitante:
中南大学湖南柿竹园有色金属有限责任公司
Resumen de: CN120497388A
本发明公开了一种具有核壳结构的复合掺杂氧化铋基SOFC电解质材料及其制备方法和应用,制备方法包括以下步骤:将掺杂氧化铋基电解质材料与纳米级高导电性离子导体进行混合,并加入粘结剂和分散剂,经混匀,得到稳定的浆料;将所述浆料采用双流体喷嘴结构的喷雾造粒设备进行喷雾造粒成型,得到核壳结构的颗粒;将所述核壳结构的颗粒经热风干燥后,再经烧结处理,得到具有核壳结构的复合掺杂氧化铋基SOFC电解质材料。本发明提供的一种具有核壳结构的复合掺杂氧化铋基SOFC电解质材料具有颗粒均匀、致密性好、电导率高、稳定性好等优点。