Resumen de: US2025237195A1
The present disclosure relates to methods for installing and uninstalling devices for reducing vibrations in wind turbines and to such devices. More particularly, the present disclosure relates to methods for installing and uninstalling devices for reducing vortex induced vibrations and stall induced vibrations when the wind turbine is parked, especially during wind turbine installation and/or maintenance, and to such devices. A method for installing a vibration mitigating device for mitigating wind turbine vibrations on a wind turbine blade of a parked wind turbine is provided. The method comprises moving the vibration mitigating device at least partially around the wind turbine blade using one or more drones; and securing the vibration mitigating device to the wind turbine. In some examples, the vibration mitigating device may be carried to the wind turbine blade using the one or more drones.
Resumen de: US2025237197A1
An arrangement for handling a power cable of an offshore, wind turbine for transportation and/or connecting to a switch gear and/or reconnecting, the arrangement including: a cable support system adapted to support a portion of the power cable; a guiding system being fixedly connectable or connected to a wind turbine tower and being adapted to guide the cable support system along a linear, vertical, track is provided.
Resumen de: US2025237193A1
A gear shifting device includes a first planetary gear train. The first planetary gear train includes a first ring gear, a first planet carrier, a first planet gear, a sun idler, and a planet idler; the planet idler and the first planet gear are both installed on the first planet carrier; the first planet gear includes a pinion and a bull gear coaxially connected to the pinion; the planet idler and the pinion are both meshed with the inside of the first ring gear and are both meshed with the outside of the sun idler; the pinion can float in the radial direction relative to the first planet carrier; an input shaft is further provided; one end of the input shaft is connected to the first ring gear.
Resumen de: US2025237196A1
A method is for repairing a shear web of a wind turbine rotor blade, wherein the shear web includes a defect at the root end, the defect running essentially along a longitudinal direction of the wind turbine rotor blade. The method includes the steps of: providing a defect-bridging device having a first cover plate and a second cover plate, both the first cover plate and the second cover plate including an inner surface and an outer surface, and bonding the first cover plate with its inner surface onto a first surface region of the shear web and bonding the second cover plate with its inner surface onto a second surface region of the shear web, such that both cover plates at least partly cover the defect. A repair assembly is for repairing a shear web of a wind turbine rotor blade.
Resumen de: US2025237190A1
A method of manufacturing a composite part (70) for a wind turbine blade (10), the method comprising the steps of providing a mould (50) comprising a mould depression (51) with a floor surface (53) and an adjacent receiving section (54), and a mould inlay (60) having an insertion section (61) and a first side (63); arranging the insertion section (61) in the receiving section (54) of the mould depression (51) so that a junction of the first side (63) and the floor surface (53) forms a first mould edge (66); arranging a fibre material (74) on a moulding surface (52) adjacent to the junction and the first side (63); infusing the fibre material (74) with a resin (75) and curing the infused fibre material (74) to manufacture the composite part (70) having a first part edge (73) being formed by the junction, wherein the material of the first side (63) is chemically inert with the resin (75).
Resumen de: DE102024101876A1
Die vorliegende Erfindung betrifft ein Windgeneratorsystem 1 für einen Fahrzeuganhänger 100, einen Fahrzeuganhänger 100 und Verfahren 1000 zu dessen Betrieb. Das Windgeneratorsystem umfasst zumindest einen Rotor 10 und zumindest einen Generator 20, wobei der Rotor 10 zumindest teilweise in einem Gehäuse 30 angeordnet ist. Das Gehäuse weist eine verschließbare Öffnung 32 auf, welche dazu eingerichtet ist einen Luftstrom 60 aufzunehmen und zu einer Anströmseite 12 des Rotors 10 zuleiten. Weiterhin umfasst das Windgeneratorsystem eine Steuereinrichtung 40, die dazu eingerichtet ist die verschließbare Öffnung 32 zumindest teilweise zu öffnen oder offenzuhalten, wenn eine Energieversorgung 210 eines Zugfahrzeugs 200 für den Fahrzeuganhänger 100 unterbrochen ist, oder unterbrochen werden soll.
Resumen de: DE102024101393A1
Die Erfindung betrifft Windenergieanlage (1) umfassend eine Standbaugruppe (2) und einen Maschinenträger (3), der um eine Hochachse verdrehbar an der Standbaugruppe (2) angebracht ist und einen Rotor (4) umfasst, wobei der Rotor (4) eine um eine Rotorachse (9) drehbar gelagerte Nabe (4a) und wenigstens ein daran angebrachtes Rotorblatt (5) aufweist, um einen mit der Nabe (4) wirkverbundenen Generator (9) drehend anzutreiben, wobei das wenigstens eine Rotorblatt (5) sich entlang einer Längsachse (L) erstreckt und um seine Längsachse (L) verdrehbar an der Nabe (4a) angebracht ist. Die Windenergieanlage (1) weist weiterhin drei Mechanismen zum Abbremsen des Rotors (4) auf, nämlich: eine mittels eines ersten Steuerungs-Aktuators (40) oder eines weiteren Steuerungs-Aktuators aktivierbare Pitchsteuerung (50) zur Steuerung der Verdrehbewegung des wenigstens einen Rotorblatts (5) relativ zu der Nabe (4a), eine mittels des ersten oder eines weiteren Steuerungs-Aktuators (40) aktivierbare Furlingsteuerung (30) zur Steuerung einer Verdrehbewegung des Maschinenträgers (3) relativ zu der Standbaugruppe (2), sowie eine mittels des ersten oder eines weiteren Steuerungs-Aktuators (40) aktivierbare Bremsvorrichtung (20) mit wenigstens einem Bremskörper (22) und wenigstens einer Bremsfläche (24), wobei der Bremskörper (22) dazu eingerichtet ist, relativ zu der Bremsfläche (24) bewegt zu werden, um eine Drehbewegung der Rotornabe (4a) relativ zu dem Maschinenträger (3) abzubremsen ode
Resumen de: DE102024101697A1
Die Erfindung betrifft einen Antriebsstrang (1) einer Windkraftanlage, umfassend einen Rotor (2) mit einer Welle (3), ein die Welle (3) lagerndes Hauptlager (4), ein Getriebe (5), welches mit der Welle (3) in Verbindung steht, und einen mit dem Getriebe (5) verbundenen Generator (6). Um auch im Falle dessen, dass das Hauptlager keine präzise Lagerung der Welle gewährleistet, das Getriebe einer möglichst geringen Belastung auszusetzen, sieht die Erfindung vor, dass das Getriebe (5) und der Generator (6) relativ zum Hauptlager (4) elastisch gelagert sind, so dass das Getriebe (5) und der Generator (6) relativ zum Hauptlager (4) Ausgleichsbewegungen in Richtung axial (a) und/oder radial (r) zur Welle (3) und/oder Schwenkbewegungen um eine auf der axialen Richtung (a) senkrecht stehenden Achse ausführen können.
Resumen de: US2025239913A1
Techniques are described for a wind power generator in which a refrigerant such as liquid helium and/or helium gas is applied to superconducting magnets via thermally conductive flexible structures. These structures thermally couple the refrigerant channels to the magnets, and/or to a thermally conductive structure (e.g., metal plate) to which the magnets are thermally coupled. The thermally conductive flexible structures may be arranged so that motion of the magnets relative to the cryogenic channels that cool the structures during heating and/or cooling of the magnets does not result in damage to the thermal connection between the channels and the magnets. The stationary stage of the generator may house a cooling station, and transfer the refrigerant to the rotary stage via a suitable rotary union.
Resumen de: AU2025200099A1
TITLE OF THE INVENTION Advanced Floating Powerhouse with Expandable Solar and Wind Arrays, an Articulated Siphon Turbine for Scalable Pumped Hydro Energy Storage, Desilting, Flood Mitigation, and Water Treatment, Operated by AI-Driven Algorithms Synchronized with Weather and Grid Demands, Utilizing HaLow Wi-Fi Sensors, and Powering Modular Liquid-Cooled Submerged Datacenters for Lake Servicing. The invention provides a scalable modular floating powerhouse system integrating solar and wind energy arrays, an articulated siphon turbine with dual-mode operation, and inflatable dams for enhanced pumped hydro energy storage and water management. AI-driven algorithms, utilizing machine learning models such as neural networks for pattern recognition and reinforcement learning for adaptive decision-making, synchronized with real-time environmental and grid demand data from HaLow Wi-Fi sensors, enable predictive flood mitigation. These algorithms dynamically adjust system parameters, preemptively deploy resources based on simulations of flooding scenarios, and optimize energy usage through real-time load balancing. The system ensures continuous renewable energy utilization for powering modular liquid-cooled submerged data centers and operates efficiently within existing grid infrastructures, addressing scalability, intermittency, and environmental sustainability challenges. TITLE OF THE INVENTION Advanced Floating Powerhouse with Expandable Solar and Wind Arrays, an Articulated Siphon
Resumen de: DE102024101757A1
Die Erfindung betrifft ein Verfahren zur Optimierung der Belastung eines Hauptlagers (1) einer Windkraftanlage, wobei das Hauptlager (1) als hydrodynamisches Gleitlager ausgebildet ist, bei dem zumindest einer der Lagerringe (2, 3) aus einer Anzahl von Lagersegmenten (4) besteht, welche sich über den Umfang des Lagerrings (2, 3) aneinander anschließen, wobei jedes Lagersegment (4) in einer definierten radialen Lage (r) positioniert werden kann und wobei jedes Lagersegment (4) an einem Umgebungsbauteil (5) angeordnet ist. Um einen optimierten Betrieb des Lagers herzustellen, sieht die Erfindung vor, dass das Verfahren die Schritte aufweist: a) Durchführung einer numerischen Simulation für jedes der Lagersegmente (4) des Lagerrings (2, 3), bei der die Belastung des Lagersegments (4) bei seiner Anordnung am oder im Umgebungsbauteil (5) bei Beaufschlagung mit der zu erwartenden Lagerbelastung und bei einer vorgegebenen initialen radialen Positionierung (r0) des Lagersegments (4) relativ zum Umgebungsbauteil (5) berechnet wird; b) Durchführung einer numerischen Simulation für jedes der Lagersegmente (4) des Lagerrings (2, 3), bei der die Belastung des Lagersegments (4) bei seiner Anordnung am oder im Umgebungsbauteil (5) bei Beaufschlagung mit der zu erwartenden Lagerbelastung und bei einer vorgegebenen geänderten radialen Positionierung (r1) des Lagersegments (4) relativ zum Umgebungsbauteil (5) berechnet wird; c) Vergleich der gemäß Schritt a) und b) ermittelten Belastu
Resumen de: WO2025154114A1
It is made up of a light, resistant and compact structure. It makes up a compartment with alternating opaque and transparent closing surfaces, capable of collecting and retaining solar radiation energy and causing the air confined inside to overheat. At the top it is closed by T-TIARIS, a casing designed to contain, protect, anchor and support a horizontal micro-wind generator. The transformation of kinetic energy into mechanical rotation energy, for powering the micro wind generator, is entrusted to T-SOFFIONE: 3-bladed wind blade, modification of the Savonius blade. The collection of water by condensation of air humidity is obtained with the installation of T-SENTINAM systems: multi-bend hollow tubing, conducted under depression by an internal piston operated by electric servomotors, up to the dew temperature. A seal moves on the outside of the tubular, driven by a servomotor, collecting the water in the container below.
Resumen de: AU2023392240A1
Structural joint for use in a supporting structure that is subjected to cyclic loading, said structural joint comprising a first structural member and a second structural tubular member, said first structural member having a first cross section that is, at least partly, defined by a first dimension, such as a width, height or diameter, wherein said first dimension is the largest dimension of said first cross section; said second structural tubular member having a second cross section that is, at least partly, defined by a second dimension, such as a width, height or diameter, wherein said second dimension is the largest dimension of said second cross section, wherein said first dimension is larger than said second dimension; wherein said structural members are arranged with respect to each other at a non-zero angle, as measured between a longitudinal direction of the first structural member and a longitudinal axis of the second structural tubular member, and wherein said second structural tubular member protrudes a wall section of the first structural member, wherein said first structural member and said second structural tubular member are interconnected by means of an internal fibre reinforced polymer wrap that is applied around the, preferably full, outer circumference of the second structural tubular member and that is applied on an inside of, and connected to, an inner side of the wall section of the first structural member.
Resumen de: AU2025205212A1
Provided herein are detection systems and related for detecting moving objects in an airspace surrounding the detection system. In an aspect, the moving object is a flying animal and the detection system comprises a first imager and a second imager that determines position of the moving object and for moving objects within a user selected 5 distance from the system the system determines whether the moving object is a flying animal, such as a bird or bat. The systems and methods are compatible with wind turbines to identify avian(s) of interest in airspace around wind turbines and, if necessary, take action to minimize avian strike by a wind turbine blade. Provided herein are detection systems and related for detecting moving objects in an airspace surrounding the detection system. In an aspect, the moving object is a flying animal and the detection system comprises a first imager and a second imager that 5 determines position of the moving object and for moving objects within a user selected distance from the system the system determines whether the moving object is a flying animal, such as a bird or bat. The systems and methods are compatible with wind turbines to identify avian(s) of interest in airspace around wind turbines and, if necessary, take action to minimize avian strike by a wind turbine blade. ul r o v i d e d h e r e i n a r e d e t e c t i o n s y s t e m s a n d r e l a t e d f o r d e t e c t i n g m o v i n g o b j e c t s i n a n a i r s p a c e s u r r o u
Resumen de: WO2025153434A1
A wind turbine gearbox is disclosed and comprises: an output shaft (20) which has a central axis extending in an axial direction (L) and is configured to be engaged with a rotor of a generator to drive it to rotate; a housing (10) which comprises a flange (12) defining a through-hole (14) that allows the output shaft (20) to pass through; a pair of bearings (22, 24) that rotatably support the output shaft (20); and a spacer ring (26) that spaces the pair of bearings (22, 24) apart from each other in the axial direction (L), wherein the wind turbine gearbox further comprises: a bearing bushing (30) arranged around the pair of bearings (22, 24) and detachably fastened to the flange (12), wherein the bearing bushing (30) and the spacer ring (26) are configured to be fastened to each other and sized so that they can be moved out of the through hole (14) in the axial direction (L) when fastened together.
Resumen de: WO2025153594A1
Method for installing a rotor blade on a wind turbine and handling toolkit for supporting a rotor blade Method for installing a rotor blade (1) on a wind turbine (2) comprising the steps of supporting the rotor blade (1) in a mounting position (9) by a support structure (10) in such a way, that, at least in a supported section (11) of the rotor blade (1), a longitudinal direction (12) of the rotor blade (2) extends at an angle of less than 45° to a horizontal plane (20), wherein the support structure (10) comprises a support means (13) forming a support surface (21) that is contacting an outer surface (39) of the rotor blade (2), while the rotor blade (2) is supported by the support structure (10), a base (14), and a connection means (15) that connect the support means (13) to a connection area (16) of the base (14) that is arranged at a height below the lowest point (47) of the support surface (21), wherein the connection means (15) is sufficiently rigid to vertically support at least part of the combined weight of the support means (13) and the rotor blade (1) and to allow for a transfer of forces that have a force component within the horizontal plane (20) and/or of a torque between the support means (13) and the connection area (16) of the base (14), mounting the rotor blade (1) to a rotatable component (6) of the wind turbine (2), in particular to a hub, while the rotor blade (1) is supported by the support structure (10), and moving or disassembling the support structu
Resumen de: WO2025155816A1
A system for inserting a stopper in a metal root insert, the system comprising a chassis, the chassis having a bottom plate, a pillar extending perpendicularly therefrom to a second end, at least one strut having a first end and a top cover disposed at the second end of the at least one strut, the top cover disposed perpendicularly to the bottom plate, an absorber clamp extending perpendicular to the pillar, the absorber clamp having a circular bearing configured to hingedly close, a top clamp disposed at the second end of the pillar, and having a cylindrical bearing configured to vertically translate relative to the top clamp, a piston disposed below the top cover and configured to translate vertically through at least one of the bottom plate and the top cover and a limit switch operatively coupled to piston, the limit switch configured to detect a travel of the piston.
Resumen de: US2025198379A1
The present disclosure relates to a method (100) for controlling a wind turbine (10) having a plurality of actuators (364). The method (100) comprises receiving operational data (366) of the wind turbine (10) and determining an operational state of the wind turbine (10). The method (100) comprises using a control model (370) to predict potential operational states depending on operation of the actuators (364) over a finite period of time. The control model (370) comprises an aeroelastic model (371) to determine loads (375) based on operational data (366). The control model (370) further comprises a strength calculation module (372) to calculate secondary load parameters (374) from the loads (375), constraints being defined for the secondary load parameters. The method (100) comprises optimizing a cost function over an optimization period of time, subject to the constraints, to determine an optimum trajectory comprising commands for the actuators (364). Finally, the method (100) comprises using the first commands of the optimum trajectory to control the actuators (364). The disclosure also relates to a controller (360) for a wind turbine (10) configured to implement such method (100).
Resumen de: EP4589137A1
Die vorliegende Erfindung betrifft ein Verfahren (200) zum Optimieren eines Rotorblattes (108) einer Windenergieanlage (100), sowie zugehöriges Rotorblatt (108) und Windenergieanlage (100), wobei sich das Rotorblatt (108) von einem Rotorblattanschluss (109) bis zu einer Rotorblattspitze (114) in einer Rotorblattlängsrichtung mit einer Rotorblattlänge erstreckt und dabei ein sich zwischen einer Vorderkante (110) und einer Hinterkante (112) erstreckendes aerodynamisches Profil aufweist, wobei das Verfahren die folgenden Schritte aufweist: Auslegen (210) des Rotorblattes (108) für Auslegungsumgebungsbedingungen, die wenigstens eine Auslegungsturbulenzintensität enthalten, wobei das Auslegen ein Vorsehen von Schallschutzmitteln (130, 140, 150, 160, 170) innerhalb eines Blattau-ßenbereiches (120) des Rotorblattes (108), der als die an die Rotorblattspitze angrenzenden 50% der Rotorblattlänge definiert ist, umfasst; Bereitstellen (220) einer Turbulenzintensität am Aufstellort der Windenergieanlage (100); Vergleichen (230) der Turbulenzintensität mit der Auslegungsturbulenzintensität; und Erhöhen (240) des Induktionsfaktors durch Vergrößern der Schallschutzmittel (130, 140, 150, 160, 170) in dem Fall, dass die Turbulenzintensität geringer als die Auslegungsturbulenzintensität ist.
Resumen de: WO2025012328A1
Disclosed is a system (100) for determining a pressure distribution, comprising a sensor assembly comprising a sensor configured to provide pressure data; a control module configured to receive position data indicating a spatial characteristic of the sensor assembly and to determine a pressure distribution based on the position data and the pressure data Also disclosed is a method for determining the pressure distribution comprising providing pressure data, receiving position data indicating a spatial characteristic of a sensor assembly, and determining a pressure distribution based on the position data and the pressure data.
Resumen de: CN119895140A
Electric motors and related methods employ a stator assembly as part of a housing assembly that counteracts an output shaft load to a mounting base. An electric motor includes an output shaft, a rotor coupled to the output shaft, a first housing, a first bearing assembly coupled to the first housing, a second housing, a second bearing assembly coupled to the second housing, and a stator assembly. The stator assembly includes a structural stator core member and a stator coil. A structural stator core member extends circumferentially around the output shaft. The second housing is coupled to the first housing by the stator core.
Resumen de: WO2024059113A1
A method of imparting anti-icing characteristics to an article includes combining a part A composition with a part B composition and a part C composition to form a ready-to-use composition; applying the ready -to-use composition on at least a portion of a surface of the article; and curing the ready-to-use composition to form a coating on the surface of the article, wherein the part A composition contains an epoxy-silicone; the part B composition contains an aminosilane; and the part C composition contains a silanol-functional silicone, and the part A composition, the part B composition, and the part C composition are packaged separately.
Resumen de: AU2023341005A1
Disclosed herein are pile structures for offshore wind turbines and method of installing the same. A pile structure (100) comprises: a pile body (101) having a pile tip (101a) configured to be inserted into a soil body (5) such as a seabed; and a fluid delivery apparatus (110) configured to deliver a fluid to a surface of the pile body (101) proximate to the pile tip (101a) in a direction extending aware from the pile tip (101a). The fluid delivery apparatus (110) is configured to deliver the fluid at a local differential pressure of between 0 and 8 bar, i.e. at a low pressure.
Resumen de: EP4589072A1
The invention describes a support assembly (1) for an offshore installation (4, 5), which support assembly (1) comprises a transition piece (2) for mounting onto an offshore foundation (3); a plurality of support shelves (10), wherein each support shelf (10) extends radially outward from the transition piece (2); a platform (11) to accommodate equipment of the offshore installation (4, 5), which platform (11) comprises a mounting sleeve (12) dimensioned to fit about the transition piece (2); and wherein the mounting sleeve (12) comprises a plurality of downwardly-extending portions (120), each dimensioned to fit between two adjacent support shelves (10); and a plurality of lateral cut-outs (121), each formed in a downwardly-extending portion (120) and shaped to receive a support shelf (10). The invention further describes an offshore wind-powered water electrolysis plant (4, 5) comprising such a support assembly (1), and a method of installing such a support assembly (1).
Nº publicación: EP4589139A1 23/07/2025
Solicitante:
SIEMENS GAMESA RENEWABLE ENERGY INNOVATION & TECHNOLOGY SL [ES]
Siemens Gamesa Renewable Energy Innovation & Technology S.L
Resumen de: EP4589139A1
A method of monitoring the operation of a wind park (100) comprising plural wind turbines (110) is provided. The wind turbines (110) generate electrical power, and the wind park (100) is configured to collect the generated electrical power and to feed the collected electrical power to a power grid (200). The monitoring method comprises monitoring an individual electrical power output of plural individual wind turbines (110) of the wind park (100) and determining a summed individual power output by summing the monitored individual electrical power output of the wind turbines (110). It further comprises monitoring a wind park (100) electrical power output fed by the wind park (100) to the power grid (200) and estimating a power loss of the wind park (100) based on a difference between the wind park (100) electrical power output fed by the wind park (100) to the power grid (200) and the summed individual power output.