Resumen de: AU2024282686A1
The invention relates to a method for producing a catalyst-coated membrane (25) for an electrochemical cell (25). In the method, a powdery sulphonated fluorine-free polymer (1) is first provided in a step (S1). In a further step (S2) of the method, the sulphonated fluorine-free polymer (1) is dispersed in a water-free solvent (3) to form a plastisol (5). Then, in a step (S3), a catalyst material (7) is mixed with the plastisol (5) to form a catalyst paste (9). In a step (S4), the catalyst paste (9) is then applied to a membrane substrate (11).
Resumen de: WO2025248200A1
The present invention relates to a proton exchange membrane containing PVDF in powder form, said PVDF being irradiated, grafted and phosphonated, to the method for preparing said membrane, and to the use of said membrane in fields requiring ion exchange, such as electrochemistry or energy-related fields. In particular, this membrane is used in the design of fuel cell membranes, such as proton-conducting membranes for fuel cells operating with H2/air or H2/O2 (these cells being known by the abbreviation PEMFC for "Proton Exchange Membrane Fuel Cell") or operating with methanol/air (these cells being known by the abbreviation DMFC for "Direct Methanol Fuel Cell").
Resumen de: CN120660207A
The invention relates to a cell (2) for a fuel cell (1), comprising: a first plate (100) comprising a peripheral region (102); a membrane electrode assembly (200) overlaid on the first plate and including a peripheral portion (202) and at least one gas diffusion layer (205) interposed between a polymer proton exchange membrane (204) and the first plate; and a first peripheral seal (300) providing a seal for the reactant fluid between, on the one hand, a bypass region (50) of the cell, and, on the other hand, a region outside the cell, the seal comprising a body portion (301) and at least one fin (302) extending into the bypass region, the fin further includes an end portion (306) interposed between the gas diffusion layer and the peripheral region and an intermediate portion (305) skewed relative to the body portion.
Resumen de: EP4657476A2
An integrated electrode-separator component, comprises an electrode substrate; and a separator comprising a set of layers comprising at least a first layer, the first layer comprising small wires, the first layer being directly deposited on the electrode substrate, wherein: a total thickness of the set of first layers ranges between about 0.5 µm and about 100 µm; and the small wires exhibit diameters in the range of about 2 nm to about 10 µm and diameter-to-length aspect ratios in the range of about 1:4 to about 1:10,000,000.
Resumen de: EP4656269A1
Le séparateur eau-gaz pour pile à combustible inclut un boîtier avec couvercle muni d'un conduit (4) de la sortie qui porte un rebord externe, annulaire. La sortie (S) est en communication avec une chambre de séparation où est réalisée une circulation tangentielle du flux gazeux à épurer (F1), autour du conduit, l'eau séparée tombant sur le fond (2a). Le rebord externe, formant une gouttière (6), est disposée autour d'une extrémité (4b) inférieure du conduit (4). Ainsi, depuis une entrée latérale, la circulation tangentielle est réalisée autour du conduit (4) central définissant un axe longitudinal (X), en partie dans une zone axialement délimitée entre la gouttière et une partie radiale d'obturation, appartenant au couvercle (3), depuis laquelle le conduit (4) fait saillie vers le bas dans la chambre. Le rebord externe contribue à accélérer la rotation du flux et empêche l'eau coulant le long du conduit de rejoindre le flux épuré.
Resumen de: EP4657579A2
A fuel cell module (10) includes a fuel cell stack (11), a DC-DC converter (12) including a diode (D1, D3, D5) and a switching element (Q2, Q4, Q6) and configured to convert an output voltage of the fuel cell stack (11) and output the converted voltage to a power storage device (93), and a controller (62). The fuel cell module (10) controls power generation of the fuel cell stack (11) in response to a command from a high-level system (90). The fuel cell stack (11) is connected to a node between the diode (D1, D3, D5) and the switching element (Q2, Q4, Q6). The controller (62) turns off a switch that is provided between the DC-DC converter (12) and the power storage device (93) in a situation in which the output voltage of the fuel cell stack (11) is higher than a voltage of the power storage device (93).
Resumen de: EP4656278A1
Membranbefeuchter, umfassend ein Gehäuse (1) mit einem Einbauraum (2), der durch eine Einschuböffnung (3) zugänglich ist und eine im Wesentlichen kastenförmige Membraneinheit (4), die auswechselbar im Einbauraum (2) angeordnet ist, wobei das Gehäuse (1) zumindest zwei Gehäuseteile (1.1, 1.2) umfasst, die gemeinsam den Einbauraum (2) begrenzen und zerstörungsfrei lösbar miteinander verbunden sind, wobei das Gehäuse (1) und die Membraneinheit (4) von zwei ersten und zweiten Luftströmen (L1, L2) durchströmbar sind und wobei das Gehäuse (1) für die Luftströme (L1, L2) jeweils einen Strömungseinlass (5, 6) und jeweils einen Strömungsauslass (7, 8) aufweist. Die Luftströme (L1, L2) sind im Wesentlichen senkrecht zueinander angeordnet, wobei die Membraneinheit (4) eine Montagerichtung (9) in den Einbauraum (2) aufweist, die sich parallel zum ersten Luftstrom (L1) erstreckt, wobei nur der erste Luftstrom (L1) durch zumindest eine Dichtung (10) aus einem gummielastischen Dichtungswerkstoff aktiv im Gehäuse (1) abgedichtet ist und wobei der zweite Luftstrom (L2) durch einen strömungsdurchlässigen Bypass (11) zwischen Gehäuse (1) und Membraneinheit (4) passiv abgedichtet ist.
Resumen de: CN120584417A
The invention relates to a device for generating electricity, comprising: two electrodes (1); -a stack of membranes (9) arranged between the two electrodes and comprising an alternation of membranes (2) selectively permeable to cations and membranes (3) selectively permeable to anions, such that each membrane is separated from adjacent membranes by an inter-membrane space in which an activated carbon fabric (4) is located; and-means (5) capable of collecting the electrical power generated by the potential difference present between the two electrodes (1), the stack (9) of membranes being intended to be supplied with an electrolyte solution (7) of a solute with a concentration CA and an electrolyte solution (8) of the same solute with a concentration CB, CB being greater than CA, said solutions being circulated alternately in the inter-membrane spaces of the stack (9).
Resumen de: WO2024158360A1
The invention is to modify the separators, which are also used in other batteries or storage batteries, especially lithium batteries, with two-dimensional materials to improve their capacity conservation and cycle life and to increase the stability of the cathode materials in the system.
Resumen de: EP4657576A1
Problem To provide a catalyst-loaded carbon having a high initial activity and excellent durability. Solution A catalyst-loaded carbon including catalyst particles and a carbon support, the catalyst particles being loaded on the carbon support. The carbon support has a crystallite size of 3.5 nm or greater and 9 nm or less, a BET specific surface area of 300 m<sup>2</sup>/g or greater and 450 m<sup>2</sup>/g or less, and a pore size of 5.0 nm or greater and 20.0 nm or less. The catalyst particles are made of platinum or a platinum alloy, have a crystallite size of 2.5 nm or greater and 5.0 nm or less and a surface area of 40 m<sup>2</sup>/g or greater and 80 m<sup>2</sup>/g or less.
Resumen de: WO2024157265A1
Systems and methods of operating aluminum-air electrochemical cells are provided, in which, following operation of the electrochemical cell(s), the alkaline electrolyte is removed from the cell(s) and a mixture of water with oxygen-rich organic solvent(s) is introduced to protect the aluminum anodes from corrosion by the electrolyte residues. For example, the cell(s) may be flooded with the mixture and then drained, or the mixture may be circulated through the cell(s). During stand-by, the mixture may be used to flood or to be circulated through the cell(s) and drained, to further enhance the operability of cell(s) during operation.
Resumen de: WO2024229495A1
The invention relates to a media distributing device (100) for distributing gaseous media to an assembly of a plurality of fuel cell stacks (200), comprising an air supply section (10, 11, 12, 13) for supplying the fuel cell stacks (200) with air and a fuel supply section (20, 21, 22, 23) for supplying the fuel cell stacks (200) with fuel. According to the invention, at least one section of a fuel supply chamber (20) is received within an air supply chamber (10), wherein the air supply chamber (10) surrounds a border of the fuel supply chamber (20) at least at the received section of the fuel supply chamber (20).
Resumen de: EP4657578A1
A fuel cell system according to an embodiment includes a fuel cell stack, an oxidant gas supply and drive unit, an oxidant gas discharge line, a first gas pressure regulation unit, a sealable humidifying water tank, a humidifying water supply line, and a humidifying water discharge line. The humidifying water tank is connected to a part of the oxidant gas discharge line, which is upstream of the first gas pressure regulation unit, and stores humidifying water to be supplied to the fuel cell stack. The humidifying water supply line supplies the humidifying water from the humidifying water tank to the fuel cell stack. The humidifying water discharge line discharges the humidifying water from the fuel cell stack outside the fuel cell system.
Resumen de: CN121054721A
本发明涉及一种气体扩散层微孔层及其制备方法、膜电极和质子交换膜燃料电池,所述气体扩散层微孔层采用带有孔径为5~10 nm的贯穿孔通道、颗粒粒径为30~60 nm的碳材料制备而成。由于该气体扩散层微孔层具有特定孔径的贯穿孔通道(5~10 nm),因而与常规的气体扩散层微孔层相比,可以在不影响原有孔隙通道的前提下增加气体传输通道,降低了质子交换膜燃料电池在高电流密度下的气体传输阻力,从而降低了膜电极的传质极化,提升了质子交换膜燃料电池的电化学性能,由此解决了质子交换膜燃料电池在高电流密度下因气体传输阻力导致性能下降的问题。
Resumen de: CN121054742A
本申请提供一种燃料电池系统控制方法、装置、设备及可读存储介质,该方法包括:在燃料电池系统进入冷启动状态后,采用恒压模式进行控制,电堆电压的目标值为第一预设电压值,当最低单片电压的实际值大于第二预设电压值时,电堆电流的目标值持续或间歇增大;在恒压模式控制过程中,若关机标志位为真,则从恒压模式切换为恒流模式,电堆电压的目标值为空,电堆电流的目标值小于或等于第一预设电流值;在恒流模式控制过程中,若关机标志位为真,且电堆电流的目标值与实际值的差值绝对值小于或等于误差允许阈值,则控制燃料电池系统退出冷启动状态,执行卸载关机流程。通过本申请,能够减少电堆欠压故障,并确保自动检测的电堆欠压故障真实可信。
Resumen de: CN121054733A
一种燃料电池系统低温起动的方法、装置、设备及计算机可读存储介质。该方法中,在燃料电池系统低温起动控制过程中,当电堆出口的冷却液温度低于第一温度阈值时,降低冷却液的流速和/或流量,以供减少电堆的热量散失;当电堆在第一预设时长内的阻抗值的变化量小于变化阈值且电堆出口的冷却液温度大于第二温度阈值时,完成燃料电池系统低温起动控制,其中,所述第二温度阈值大于所述第一温度阈值,通过监测阻抗值及其稳定性能及时地反映电堆内部的变化情况,能够更可靠地确定低温起动控制的结束时机,并根据电堆出口的冷却液温度动态调整流速,使冷却液加速升温,使其更快达到预设阈值,从而缩短了低温起动时长,降低氢耗,提高了低温起动控制过程的可靠性。
Resumen de: CN121054752A
本申请公开了一种含烧结助剂的氧化铈基电解质粉的制备方法,涉及新能源技术领域。应用于金属支撑固体氧化物燃料电池,包括以下步骤:将烧结助剂与溶剂混合,得第一混合液;将第一混合液与络合剂和分散剂混合,得第二混合液;将第二混合液与氧化铈基电解质原粉料混合得第三混合液,将第三混合液球磨,烘干,烧结,得含烧结助剂的氧化铈基电解质粉;其中,所述络合剂包括含羧基、羟基、氨基基团的化合物。通过添加含羧基、羟基、氨基基团的化合物,起到连接作用,其中一部分络合自溶于溶剂的烧结助剂金属离子,另一部分络合在电解质粉体表面的活性位点,从而起到将金属离子固定在电解质粉体表面的作用,达到烧结剂均匀分散的目的。
Resumen de: CN121054723A
本申请涉及一种燃料电池膜电极组件、单电池及燃料电池,包括:质子交换膜和膜电极边框,其中膜电极边框包括连接在质子交换膜阴极侧的第一边框,第一边框连接质子交换膜的一面还连接有第二边框,第一边框的厚度小于所述第二边框的厚度。本申请通过第一边框和第二边框在质子交换膜的两侧形成非对称设计,进而可以为阴极分配区增加流道深度提供空间条件,使阴极侧的空气或氧气流阻显著降低,提高了燃料电池整体电化学反应效率。由于氢气的低密度特性,阳极的整体流阻相对很小,因此阳极侧分配区流道深度不变或适当减小。同时第一边框和第二边框组成双层结构的膜电极边框减少了封装工序,降低了材料成本和工艺成本。
Resumen de: CN121044896A
本发明公开了一种纳米氧化锆粉体及其制备方法、制备装置和应用。制备方法包括:将粒度D90小于50μm的金属氧化物粉体溶于溶剂中形成泥浆;将所述泥浆加压搅拌分散形成预分散浆料,对所述预分散浆料进行砂磨处理;将砂磨处理后的浆料输送至火焰燃烧设备中,实现掺杂,并完成干燥,获得掺杂的纳米氧化锆产品。本发明工艺流程简单,制备得到的产品粒度小、粒度均匀、纯度高,所获得的掺杂的纳米氧化锆产品中元素掺杂均匀,本发明获得的产品可作为固体氧化物燃料电池的电解质薄膜原料。
Resumen de: CN121054730A
本发明公开了一种面向变海拔环境的车用燃料电池供氧系统及方法,该系统包括空压机,还包括三通阀、高压氧气瓶、储气罐和四通比例阀;所述高压氧气瓶的出口与所述四通比例阀的第三进口连通;所述储气罐的出口与所述四通比例阀的第二进口连通;所述三通阀的三个端口分别与所述空压机的出口、所述储气罐的入口以及所述四通比例阀的第一进口连通;所述四通比例阀的出口用于与燃料电池堆的空气进口连通,以使适量的氧气进入到燃料电池堆的空气进口。本发明能够使燃料电池在不同海拔条件下稳定工作。
Resumen de: CN121054729A
本发明涉及一种甲醇重整高温膜燃料电池发电系统及其换热网络结构,所述发电系统包括高温膜燃料电池堆、甲醇重整器、换热器、平行流散热器、缓冲油壶、导热油循环泵、逆变器和控制器;其中,高温膜燃料电池堆的导热油腔室的出口通过第二换热器与缓冲油壶的入口和导热油循环泵的出口依次连接,导热油循环泵的入口与平行流散热器的入口连接,平行流散热器的出口通过第一换热器与导热油腔室的入口连接,形成一个导热油循环系统。本发明通过将高温膜燃料电池堆中的导热油泵出,使导热油腔室的压力为负压,有利于减小导热油腔室的密封压力,降低电堆密封难度,防止漏油,改善发电系统输出性能及运行稳定性,延长发电系统使用寿命。
Resumen de: CN116093381A
The embodiment of the invention discloses a gas supply method and device. According to the embodiment of the invention, the voltage of each single battery can be detected; determining an air shortage position according to the voltage of each single battery; and at least one of the flow parameter and the air pressure parameter of the corresponding air inlet is adjusted through the valve, so that the air intersection position moves to the air shortage position. By detecting the voltage of the single battery, the air shortage position can be intelligently determined, and at least one of the corresponding flow parameter and the air pressure parameter is adjusted through the air inlets, so that the gas intersection position formed by the gas supplied by the two air inlets is moved to the air shortage position, the reaction of the single battery at the air shortage position is improved, and the safety of the battery is improved. The requirements of the single batteries at different positions on the gas flow and the flow velocity are met, so that the high-efficiency operation of the fuel cell is ensured.
Resumen de: WO2024202862A1
This membrane electrode structure comprises: a membrane electrode assembly that is configured by joining an electrolyte membrane, a first gas diffusion electrode layer, and a second gas diffusion electrode layer in a first direction; a frame member that extends in a second direction that is orthogonal to the first direction and has an inner edge portion that forms an opening in which the membrane electrode assembly is disposed; a first sealing portion that is constituted by an adhesive and is provided so as to form a seal between a first surface, which is a surface on one side in the first direction of the inner edge portion of the frame member, and a first side end surface, which is an end surface in the second direction of a first gas diffusion layer that is included in the first gas diffusion electrode layer; and a second sealing portion that is constituted by an adhesive and is provided so as to form a seal between a second surface, which is a surface on the other side in the first direction of the inner edge portion of the frame member, and a second side end surface, which is an end surface in a second direction of a second gas diffusion layer that is included in the second gas diffusion electrode layer.
Resumen de: CN121045797A
本发明公开了一种交联型磺化聚醚醚酮复合质子交换膜及其制备方法和应用。交联型磺化聚醚醚酮复合质子交换膜包括磺化聚醚醚酮、磺化石墨烯和交联剂,所述交联剂为二氨基乙二醛肟。制备方法包括如下步骤:(1)按质量比称取磺化聚醚醚酮、磺化石墨烯、交联剂和有机溶剂,将磺化聚醚醚酮和磺化石墨烯加入三口烧杯中,加入有机溶剂然后充分搅拌溶解,再加入交联剂并在加热条件下保持搅拌,得到高黏度混合液;(2)将所述高黏度混合液加热后,刮涂至玻璃板表面,然后置于真空干燥箱中干燥至恒重,恢复常压并冷却至室温后,取出,剥离,得到交联型磺化聚醚醚酮复合质子交换膜,可用于氢燃料电池或者制氢电解槽的隔膜。
Nº publicación: CN121054735A 02/12/2025
Solicitante:
海亿新能(临海)科技有限公司武汉海亿新能源科技有限公司
Resumen de: CN121054735A
本发明涉及燃料电池技术领域,具体提供了燃料电池系统启动中的水路温度分级控制方法和燃料电池系统。燃料电池系统的冷却回路包括冷却主回路和连接于冷却主回路上的加热支路,加热支路与冷却主回路的连接处设有三通阀门,该方法包括:获取电堆的进出口水温差和实际进堆水温;根据进出口水温差和实际进堆水温,确定电堆的当前启动阶段,其中,当前启动阶段具体包括初步启动阶段、中度启动阶段或完全启动阶段;通过与当前启动阶段对应的三通阀门开度控制策略,对三通阀门的开度进行控制,用于通过控制三通阀门的开度来控制冷却主回路和加热支路的流量,以实现对电堆的入堆水温的控制。