Resumen de: CN120765009A
本申请提供了一种全寿命周期安全评价方法、系统、电子设备及存储介质,涉及安全评估技术领域,其中,该方法包括:构建压力钢管的安全风险评价指标因素集和安全风险评语集,安全风险评价指标因素集中包括影响压力钢管全寿命周期安全的多个评价指标因素,安全风险评语集中包括全寿命周期的多个安全风险等级;基于层次分析法确定各个评价指标因素的权重得到目标权重集合,采用模糊综合评价法计算各个评价指标因素对安全风险评语集的隶属度,生成模糊评价矩阵;对目标权重集合和模糊评价矩阵进行复合运算得到模糊综合评价集;根据模糊综合评价集确定压力钢管的目标安全风险等级。实施本申请提供的技术方案,达到了提高安全评价的准确性的效果。
Resumen de: CN120763737A
本发明提供一种自动气象站、组件设备及自动气象站网的运行熵指数计算方法,方法包括:获取自动气象站中每一个组件设备的无故障运行时间和雨量筒维护时间间隔;根据每一个组件设备的无故障运行时间和雨量筒维护时间间隔,计算自动气象站中每一个组件设备的运行熵指数和运行模糊态,并计算自动气象站和自动气象站网的运行熵指数和运行模糊态,对自动气象站的运行状态实时进行评估。通过本发明方法,对自动气象站的各个组件、自动气象站以及自动气象站网的运行状态进行评估,预估运行风险,通过监视告警便于及时发现处置和告警,防患于未然。
Resumen de: CN120768813A
本发明涉及基于LLM端对端的工控协议模糊测试脚本生成方法,综合目标协议规范文本解析提取、以及协议流量样本PCAP包分析生成功能码JSON,经提取结果与功能码JSON之间的一致性检查,依据字段来源所提取协议消息格式,字段示例数据来源一致性检查结果,应用大语言模型生成模糊测试脚本,其中字段准确没有缺失,数据针对性更强,最后经模糊测试引擎执行,并通过强化学习对模糊测试脚本迭代优化,获得最优目标模糊测试脚本,提升了脚本生成的准确性与效率。
Nº publicación: AU2025234164A1 09/10/2025
Solicitante:
CARNEGIE MELLON UNIV
Carnegie Mellon University
Resumen de: AU2025234164A1
A system for outputting a visual representation of a brain of a patient is configured to receive sensor data representing a behavior of a region of the brain of the patient. The system retrieves mapping data that maps a prediction value to the region. The prediction value is indicative of an effect on a behavior of the patient responsive to a treatment of the region, the mapping data being indexed to a patient identifier. The system receives, responsive to an application of a stimulation to the region, sensor data representing behavior of the region. The system executes a model that updates, based on the sensor data, the prediction value for the region. The system updates, responsive to executing the model, the mapping data by including the updated prediction value in the mapping data. The system outputs a visual representation of the updated mapping data comprising the updated prediction value. A system for outputting a visual representation of a brain of a patient is configured to receive sensor data representing a behavior of a region of the brain of the patient. The system retrieves mapping data that maps a prediction value to the region. The prediction value is indicative of an effect on a behavior of the patient responsive to a treatment of the region, the mapping data being indexed to a patient identifier. The system receives, responsive to an application of a stimulation to the region, sensor data representing behavior of the region. The system executes a model that u