Resumen de: FI20245509A1
Disclosed is method for thermal management of electric vehicle charging station (202, 300) comprising charging points (204, 302) each having power modules (206, 304) and energy storage system (ESS) (210, 306) being coupled to each other by means of fluid transfer circuit (212, 312). The method comprising determining current temperature of ESS; determining amount of heat losses generated by power modules, and based on determination, changing operational parameters of power modules to generate more heat losses when current temperature is below optimal operation temperature of ESS; generate less heat losses when current temperature is above optimal operation temperature of ESS; collecting, by first heat exchanger (218, 314), heat losses generated by power modules and transferring heat losses to working fluid of fluid transfer circuit; and transferring working fluid, through fluid transfer circuit, to second heat exchanger (220, 316) arranged in thermal connection with energy storage (222, 308) of ESS.
Resumen de: FI20245486A1
According to an embodiment, a computer-implemented method (100) for managing a plurality of third party assets of a virtual power plant for power grid frequency balancing comprises: obtaining (101) at least one operating parameter of each asset in the plurality of third party assets; obtaining (102) an operating profile of each asset in the plurality of third party assets, wherein the operating profile of each asset indicates how the at least one energy storage unit, the at least one power source, and the at least one asset load are operated; determining (103) an activation preference of each asset in the plurality of third party assets based at least on the at least one operating parameter of each asset and the operating profile of each asset; forming (104) at least one activation priority list based at least on the activation preference of each asset in the plurality of third party assets; and activating (105) the plurality of third party assets for power grid frequency balancing according to the at least one activation priority list.
Resumen de: FR3161311A1
Procédé utile pour contrôler le caractère non oxydant du milieu gazeux d’un dispositif électrochimique et en particulier pour y détecter la présence indésirable d’un gaz oxydant, dispositif électrochimique et utilisation afférents La présente invention vise l’utilisation d’une électrode supplémentaire à base d’au moins un élément ou matériau conducteur ionique, électro-actif et oxydable dans un dispositif électrochimique comprenant au moins une cellule électrochimique comprenant une électrode positive, une électrode négative et un électrolyte, en tant que moyen de détection de la présence ou non d’un gaz oxydant dans ledit dispositif électrochimique, ladite électrode supplémentaire possédant un potentiel rédox inférieur à celui dudit gaz oxydant. Figure pour l’abrégé : Néant
Resumen de: FR3161321A1
La présente invention a pour objet un système électrique (1) comprenant une machine électrique (5), une batterie de puissance (2) comprenant un onduleur multiniveaux distribué dans la batterie et adaptée pour alimenter électriquement la machine électrique (5), un moyen de diagnostic (3) adapté pour commander un mode de court-circuit piloté de la machine électrique (5), la batterie (2) comportant au moins une ligne de courant (21) comportant une pluralité de dispositifs de stockage d’énergie (MCLk) connectés en série, chaque dispositif de stockage (MCLk) comportant un élément électrochimique de stockage d’énergie (CLk) fournissant une tension et un circuit de commutation (COMk) comprenant un pont en H, le moyen de diagnostic (3) étant configuré pour piloter tous les circuits de commutation de la batterie en état de by-pass lorsque le mode de court-circuit piloté de la machine électrique (5) est activé. Figure 1.
Resumen de: FR3161313A1
Système de maintien de modules d’accumulateurs électrochimiques. Equipement de manutention intégrant au moins un tel système. L’invention concerne un système de maintien d’un module de batterie (M) comprenant: - une pluralité d’accumulateurs électrochimiques (A1, A2…A42) agencés en formant une matrice; - le cas échéant, au moins un boitier rigide (10) comprenant une enveloppe latérale (11) entourant la matrice; le système (20) comprenant au moins deux mors de serrage (21, 22) comprenant chacun : - une plaque de support (23, 24), - au moins un coussin gonflable (25, 26) supporté et fixé à la plaque de support, et qui, dans au moins un état gonflé, est adapté pour venir en contact en épousant au moins une partie de la forme extérieure de la matrice ou le cas échéant du boitier rigide du module et ainsi le serrer avec l’autre coussin également dans au moins un état gonflé. Figure pour l’abrégé : fig.4
Resumen de: FR3161314A1
Structure d’assemblage d’au moins une matrice d’accumulateurs électrochimiques à au moins une paroi gonflable continue dans au moins un plan entourant la matrice dans le plan. L’invention consiste essentiellement en un système d’assemblage d’au moins une matrice comprenant au moins deux accumulateurs électrochimiques (A1, A2…A42); le système (20) comprenant une structure gonflable comprenant au moins une paroi gonflable principale entourant l’intégralité de la forme extérieure de la(des) matrice(s) selon au moins un plan de coupe et qui, dans au moins un état gonflé, est adaptée pour venir en contact en épousant au moins le pourtour de la matrice et ainsi la serrer.. Figure pour l’abrégé : Fig.7B
Resumen de: FR3161325A1
La présente invention a pour objet une batterie de puissance comportant une pluralité de modules élémentaires de stockage d’énergie connectés en série dans au moins une ligne de courant de manière à former un onduleur multiniveaux distribué dans la batterie et dans laquelle la pluralité de modules élémentaires comporte au moins un premier module élémentaire dans lequel les cellules électrochimiques (21) du cluster (CL1) sont interconnectées selon une première configuration d’interconnexion déterminant un premier niveau de tension de cluster (VCL1) et un deuxième module élémentaire dans lequel les cellules électrochimiques (24) du cluster (CL4) sont interconnectées selon une deuxième configuration d’interconnexion déterminant un deuxième niveau de tension de cluster (VCL4), le deuxième niveau de tension de cluster (VCL4) étant la tension de cluster maximale de la batterie et le premier niveau de tension de cluster (VCL1) étant strictement inférieur au deuxième niveau de tension de cluster (VCL4). Figure 2.
Resumen de: FR3161309A1
La présente invention a pour objet un procédé de contrôle du courant d’un système de batterie (1) comprenant un élément électrochimique de type lithium-ion (10), le procédé comporte les étapes d’estimation d’une concentration de lithium en surface d’une électrode de polarité calculée à partir d’un modèle en éléments finis selon des pas de calcul pour un volume de grain discrétisé de la structure de l’électrode comprenant un volume de surface et au moins un volume interne prédéterminés et le contrôle du courant de l’élément électrochimique (10) comprenant la fourniture d’une première consigne de courant (IDC1) lorsque la concentration de lithium est inférieure à un niveau maximum autorisé et la fourniture d’une deuxième consigne de courant (IDC2) lorsque la concentration de lithium est égale ou supérieure au niveau maximum autorisé. Figure 1.
Resumen de: FR3161308A1
Micro-batterie comportant : un support architecturé comportant :. un substrat,. des micro-piliers disposés sur une face du substrat, chaque micro-pilier ayant une surface libre, et. des nano-fils disposés sur la surface libre d’au moins une partie des micro-piliers,un premier collecteur de courant disposé sur le support architecturé, et un deuxième collecteur de courant,une première électrode disposée sur le premier collecteur de courant, et une deuxième électrode, les première et deuxième électrodes étant disposées entre les premier et deuxième collecteurs de courant, etun électrolyte disposé entre les première et deuxième électrodes.
Resumen de: FR3161208A1
Support architecturé de micro-dispositif de stockage d’énergie comportant : un substrat,des micro-piliers disposés sur une face du substrat, chaque micro-pilier ayant une surface libre,des nano-fils, lesdits nano-fils étant disposés sur la surface libre d’au moins une partie des micro-piliers, et ladite face du substrat étant dénuée de nano-fils.
Resumen de: FR3161310A1
Titre : Dispositif de régulation thermique pour le refroidissement d’organes de stockage d’énergie électrique. L’invention a pour objet principal un dispositif de régulation thermique (4) pour le refroidissement d’organes de stockage d’énergie électrique (2), comprenant un tube (6) configuré pour être au contact des organes de stockage d’énergie électrique (2), , le tube (6) s’étendant selon une direction d’allongement principale longitudinale et comportant une pluralité de canaux (8) longitudinaux de circulation de fluide caloporteur formés les uns à côté des autres dans la matière à l’intérieur du tube et qui débouchent sur chaque face d’extrémité longitudinale (12) du tube qui présente une boite de renvoi qui comprend une paroi interne et un fond, la paroi comprenant une butée d’assemblage configurée pour être en contact avec une première extrémité du tube (6) lorsque celui-ci est introduit dans la boite de renvoi, de façon à laisser un espace entre le fond de la boite de renvoi et ladite extrémité du tube (6), et en ce que le dispositif comprend en outre un élément isolant électrique configuré pour se fixer à la boite de renvoi de façon à isoler électriquement au moins la boite de renvoi, de préférence la boite de renvoi et une partie du tube. Figure pour l’abrégé : Figure 2
Resumen de: WO2025215487A1
Provided herein are compositions having the general formula AX. In the formula, A = LieTifcd; c is a cation vacancy; 0 ≤ d ≤ 0.5; 0 ≤ e < 1; 0 < f ≤ 1. X = OpSqFlClkam; a is an anion vacancy; 0 ≤ p ≤ 1; 0 ≤ q ≤ 1; 0 ≤ l ≤ 1; 0 ≤ k ≤ 1; 0 ≤ m ≤ 0.5. Also provided are methods of making the compositions, use of the compositions, and an electrode, electrochemical cell, or electrochemical energy storage devices comprising such compositions.
Resumen de: WO2025213806A1
A preparation method for a copper-aluminum composite terminal post sheet material. The preparation method comprises: heating aluminum ingots to 700°C-800°C for melting, and allowing an aluminum ingot liquid at 700°C-800°C to stand still for 0-30 minutes to obtain an aluminum solution; roughening and cleaning a copper strip to complete a surface pretreatment of the copper strip; continuously casting an aluminum strip by using the aluminum solution which has been left to stand; forming terminal post aluminum bosses by means of forming rollers, increasing the copper-aluminum bonding strength, and performing side discharging of aluminum waste; performing mold pressing at normal temperature for the forming of fine features of the rolled bosses and the shaping of large bosses; and cutting terminal posts, and determining whether battery terminal post products meet the standard. Thus, the preparation process and apparatus of a copper-aluminum composite material for terminal posts are improved, and formed battery terminal posts are not of a conventional copper roll shape. In addition, terminal-post aluminum copper formed by warm rolling is tested to distinguish the terminal-post aluminum copper formed by warm rolling that meets the standard.
Resumen de: WO2025213559A1
The present application belongs to the field of the preparation of high-purity ferric phosphate, and provides a low-impurity ferric phosphate, and a preparation method therefor and the use thereof. The preparation method comprises: mixing wet-process phosphoric acid with water to obtain a phosphoric acid solution, adjusting the pH of the phosphoric acid solution, and heating and aging same to obtain an aged slurry; filtering same to obtain a phosphate solution, and adding water and a first oxidant to obtain an aqueous phosphate solution containing the first oxidant; mixing a ferrous sulfate solution with the aqueous phosphate solution containing the first oxidant to obtain a first slurry; heating and aging same, and after the color of the first slurry changes, adding a second oxidant to the first slurry to obtain a second slurry; and performing solid-liquid separation on the second slurry, and sequentially washing, drying and sintering the obtained solid material to obtain a low-impurity ferric phosphate. In the present application, wet-process phosphoric acid is used as a raw material, and therefore the utilization rate of phosphorus in the wet-process phosphoric acid is greatly increased; moreover, prepared anhydrous ferric phosphate has a relatively low impurity content.
Resumen de: WO2025215413A1
The present disclosure relates to a system (100) for recycling metals from depleted batteries, the system includes a battery processor (102) configured to mechanically shred depleted batteries to produce black mass containing cathode and anode active material along with binders and recycle electrolyte solvents present in depleted batteries. A plastic processor (110) segregates plastic from metals, steel casing, and iron. A steel and iron processing unit (114) incorporating an eddy current with variable magnetic strength to segregate and recover steel and iron materials from the depleted batteries and a metal separation unit (116) having different sets of pulverizers and gravity separator for size classification and separation of the metals from the depleted batteries, with recovered metals exhibiting a metal assay falling within a predefined range of 98-99%.
Resumen de: WO2025215406A1
There is described an electrical energy storage device (1) comprising a casing (2), at least two electrical energy storage cells (3) enclosed within the casing (2) and arranged adjacent to one another, and at least one thermal barrier device (7) interposed and stacked between the storage cells (3) in a thickness direction (T) thereof and configured to thermally insulate the adjacent storage cells (3), the thermal barrier device (7) has a mat-like configuration and includes two opposite lateral surfaces (7a, 7b) separated by a perimetral wall (8) defining the thickness of the thermal barrier device (7), the thermal barrier device (7) comprises a sealing member (10) extending along at least part of the perimetral wall (8) and arranged in abutment against the casing (2) so as to seal in a fluid- tight manner the adjacent storage cells (3) from one another.
Resumen de: WO2025213549A1
The present application relates to a step-down lithium battery and a manufacturing method therefor. The step-down lithium battery comprises a circuit assembly, a plastic frame, a wound battery cell assembly, a first metal housing, a second metal housing, an insulating sealing member and an insulating sheath, the circuit assembly and the plastic frame being arranged in the first metal housing, the wound battery cell assembly being arranged in the second metal housing, the first metal housing and the second metal housing being fitted with each other vertically and being fixed by means of circumferential welding, the insulating sealing member being used for sealing the second metal housing, and the insulating sheath wrapping the first metal housing and the second metal housing. The present application uses the first metal housing and the insulating sealing member for completely sealing the upper end of the second metal housing, thus achieving good sealing performance, and effectively preventing electrolyte leakage; and only one steel housing layer is provided outside the wound battery cell assembly, such that compared with the prior art, one steel housing layer or soft housing layer is reduced, thus reducing the material cost. The connection strength of the first metal housing and the second metal housing is high, such that the first metal housing and the second metal housing are not prone to damage.
Resumen de: WO2025214582A1
Sensor devices and methods for detecting defects in a test sample based on combined thermography sensing and eddy current sensing. A sensor device is provided for detecting defects in a test sample using an eddy current sensor and a thermal camera, and a method is provided for detecting defects in a test sample by generating an eddy current in the test sample, detecting a variation in the eddy current, detecting a thermal image of the test sample, and determining a quality parameter based on the variation in the eddy current and the thermal image. Systems and methods are further provided for manufacturing an electrochemical energy storage device, particularly an electrode for any electrochemical energy storage device, using the sensor device.
Resumen de: WO2025214575A1
The invention relates to a battery housing (100) for receiving a plurality of battery cells or battery modules, in particular in an electrically drivable vehicle, comprising an one-piece, hot-formed and press-hardened receiving trough (101) made of steel for receiving the plurality of battery cells or battery modules, wherein the receiving trough (101) has a baseplate (103) and an outer wall (105) which is arranged around the baseplate (103), wherein the outer wall (105) delimits a trough interior (107) of the receiving trough (101), wherein a flange (109) around the outer wall (105) is arranged on the outer wall (105) of the receiving trough (101), which flange extends at an angle to the outer wall (105) of the receiving trough (101), wherein the receiving trough (101) has a tensile strength of at least 1300 MPa at least in some sections; and a corrugated bottom walling (111) which is made of a steel alloy and has a plurality of bearing sections (115) which are each integrally bonded to the baseplate (103) of the receiving trough (101) by way of a soldered connection (117), and wherein the corrugated bottom walling (111) has a plurality of extension sections (119) which are arranged at a distance from the baseplate (103) of the receiving trough (101), wherein the plurality of extension sections (119) of the corrugated bottom walling (111) and the baseplate (103) of the receiving trough (101) delimit a plurality of fluid guiding channels (121) for guiding a fluid, wherein the
Resumen de: WO2025213547A1
The present application relates to a 1.5V lithium battery and a manufacturing method therefor. The lithium battery comprises a circuit component (1), a plastic frame (2), a wound battery cell assembly (3), a first metal housing (4), a second metal housing (5), a first insulating sealing member (6) and an insulating sheath (7). The wound battery cell assembly (3) is arranged inside the second metal housing (5). The first metal housing (4) and the second metal housing (5) are vertically docked and are fixed by means of circumferential welding. The circuit component (1) comprises a PCB (11), a low-voltage positive electrode cap (12), a high-voltage positive electrode connection piece (13) and a negative electrode elastic piece (14); and the circuit component (1) can stably output a low voltage of 1.5V. The upper end of the wound battery cell assembly (3) is arranged at a relatively shallow depth within the second metal housing (5), which requires the length of a positive electrode tab (31) to be shortened so that the length is insufficient for making contact with the inner wall of the metal housing, thus thoroughly solving the risk of short circuit between the positive electrode tab (31) and the metal housing. The first insulating sealing member (6) and a second insulating sealing member (8) can prevent electrolytes from leaking or entering the first metal housing (4), thereby ensuring the stability of electrical performance.
Resumen de: US2025318625A1
A sealing lid assembly and a packaging container using the sealing lid assembly are provided. The sealing lid assembly includes an inner stopper, an inner lid, and a sealing member, where a discharge region is formed in the inner stopper; a discharge hole is formed in the discharge region; a discharge groove and a sealing region are formed in the inner lid; the sealing member is airtightly combined with the inner lid; the inner lid is rotatably connected to the inner stopper through a rotary mechanism; the inner lid is made of first plastic; the sealing member is made of second plastic; the inner lid and the sealing member are formed integrally through two-shot injection molding; and hardness of the first plastic is greater than hardness of the second plastic. Since the sealing member is airtightly combined with the inner lid, the sealing lid assembly has a desirable sealing effect.
Resumen de: US2025318582A1
An aerosol-generating device is disclosed. The aerosol-generating device of the disclosure includes a battery, a heater configured to heat an aerosol-generating substance, a power supply circuit electrically connected to the battery and the heater, a temperature sensor configured to sense a temperature of the battery, a puff sensor configured to detect a puff and a controller. The controller is configured to control the power supply circuit to supply first power corresponding to detection of the puff to the heater when the puff is detected and control the power supply circuit to supply second power corresponding to non-detection of the puff to the heater when the puff is not sensed. At least one of the first power or the second power is changed according to the temperature of the battery.
Resumen de: US2025318753A1
An analyte sensor system is provided. The system includes a base configured to attach to a skin of a host. The base includes an analyte sensor configured to generate a sensor signal indicative of an analyte concentration level of the host, a battery, and a first plurality of contacts. The system includes a sensor electronics module configured to releasably couple to the base. The sensor electronics module includes a second plurality of contacts, each configured to make electrical contact with a respective one of the first plurality of contacts, and a wireless transceiver configured to transmit a wireless signal based at least in part on the sensor signal. The system includes a first sealing member configured to provide a seal around the first and second plurality of contacts within a first cavity. Related analyte sensor systems, analyte sensor base assemblies and methods are also provided.
Resumen de: US2025323342A1
A control method for a battery self-heating system including a three-phase motor, a battery pack, a three-phase inverter, and a switch circuit, includes: acquiring battery pack temperature information; when determined that the battery pack requires self-heating according to the battery pack temperature information, obtaining voltage information between a first end and a second end of the switch circuit; according to the voltage information between the first end and the second end of the switch circuit, controlling the switch circuit for self-heating of the battery pack; when it is determined that the battery pack does not require self-heating according to the battery pack temperature information, obtaining electric current information between the first end and the second end of the switch circuit; and according to the electric current information between the first end and the second end of the switch circuit, controlling the switch circuit to stop self-heating of the battery pack.
Nº publicación: DE102024116678A1 16/10/2025
Solicitante:
GM GLOBAL TECH OPERATIONS LLC [US]
GM GLOBAL TECHNOLOGY OPERATIONS LLC
Resumen de: DE102024116678A1
Ein System zum elektrischen Verbinden von Zungen einer Batteriezelle umfasst eine elektrisch leitende Schweißplatte, die so konfiguriert ist, dass sie in einem Gehäuse der Batteriezelle angeordnet und elektrisch mit einem Zungenstapel verbunden ist, der aus einer Vielzahl von Zungen gebildet wird, die sich von Elektrodenschichten eines Zellenstapels erstrecken. Die Schweißplatte hat eine erste Schweißfläche und einen verformbaren Teil, der eine zweite Schweißfläche definiert, und der verformbare Teil ist so konfiguriert, dass er während des Schweißens des Zungenstapels an die Schweißplatte verformt und in einem verformten Zustand gehalten wird.