Resumen de: WO2025140360A1
Disclosed in the present utility model is a coolant flow distribution liquid cooling plate, comprising: a liquid cooling plate, wherein the liquid cooling plate is provided with at least two liquid cooling regions, and the at least two liquid cooling areas have different heat exchange area; a flow distribution pipe fitting which is connected between a coolant inlet pipe and the liquid cooling plate and is used for carrying out flow distribution on the coolant on the basis of the ratio of the heat exchange area of the at least two liquid cooling regions; and a flow convergence pipe fitting which is connected between a coolant outlet pipe and the liquid cooling plate and is used for converging the coolant in the at least two liquid cooling regions and discharging same to the coolant outlet pipe. For a battery pack with imbalanced matching of multiple liquid cooling areas on a liquid cooling plate, the liquid cooling plate adopts an inlet flow distribution design, the coolant flow volume is distributed on the basis of the matching ratio of the multiple liquid cooling areas, making the matching ratio of the multiple liquid cooling areas consistent with the coolant flow distribution ratio, achieving the reasonability of coolant flow distribution, and meeting the thermal management performance requirements of a battery pack.
Resumen de: WO2025139117A1
An electric device (4000). The electric device (4000) comprises a battery pack (3000). The battery pack (3000) comprises a battery module (2000) or a battery (1000). The battery module (2000) comprises the battery (1000). The battery (1000) comprises a battery cell (100). The battery cell (100) comprises a cell core (1), a first current collecting member (2), and a second current collecting member (3). One end of the cell core (1) is provided with a first tab (11) and a second tab (12). The first current collecting member (2) is arranged at said end of the cell core (1), and the first current collecting member (2) is connected to the first tab (11). The second current collecting member (3) is arranged at said end of the cell core (1), the second current collecting member (3) is connected to the second tab (12), and at least one of the second current collecting member (3) and the first current collecting member (2) is a single-layer structural member.
Resumen de: WO2025139107A1
A non-aqueous electrolyte, a lithium-ion battery, and an electric device. The non-aqueous electrolyte comprises an electrolyte additive, wherein the electrolyte additive comprises one or more of Li3+xPO4-xNx, Li3yLa2/3-yTiO3, and Li1+zAlzTi2-z(PO4)3, wherein 0
Resumen de: WO2025139097A1
An electric device, the electric device comprising a secondary battery, and the secondary battery comprising an electrode. The electrode comprises a lithium supplementation layer. The lithium supplementation layer comprises a lithium supplementation agent and a conductive agent. The ratio of the sum of the surface areas of the conductive agent in the lithium supplementation layer to the sum of the surface areas of the lithium supplementation agent in the lithium supplementation layer is (0.5-5):1.
Resumen de: WO2025138197A1
Provided in the present application are a battery anti-explosion structure, a battery, and a battery pack. The battery anti-explosion structure comprises a cover plate; a first notch and a second notch are provided on the cover plate, where the thickness of the cover plate at the first notch is less than the thickness of the cover plate at the second notch; the first notch comprises a first segment and a second segment that are connected together, the first segment has a first end and a second end, the second segment has a third end and a fourth end, and the distance between the first end and the third end is greater than the distance between the second end and the fourth end.
Resumen de: WO2025138127A1
A device and method for preparing a lithium battery negative electrode material. The device comprises: a vacuum chamber, a hollow cathode, an anode, a conveying channel, and an air intake duct. The hollow cathode and the anode are disposed in the vacuum chamber. A reaction area for generating plasma is formed between the hollow cathode and the anode. The conveying channel is disposed in a hollow channel of the hollow cathode. A feeding port of the conveying channel is located at an end of the hollow cathode in the vacuum chamber. The conveying channel is configured to convey particles comprising a first element. An air inlet of the air intake duct is disposed in the reaction area. The air intake duct is configured to introduce a reaction gas comprising a second element. The reaction gas is ionized into a plasma in the reaction area. The plasma and the particles form composite particles which can be used as a lithium battery negative electrode material. The cores of the composite particles comprise the first element. The shells of the composite particles comprise the second element.
Resumen de: WO2025138136A1
A secondary battery and an electronic apparatus, belonging to the technical field of batteries. The secondary battery is in a curved shape. A first outer arc anode active material layer of a first anode sheet of an outer arc side electrode assembly of the secondary battery is divided into two layers, and the binder mass content of a first inner arc anode active material layer thereof and the binder mass content of the inner layer of the first outer arc anode active material layer are made to be greater than that of the outer layer thereof, the binder mass content being negatively correlated with the rebound of the layers. Thus, when in use, the layer having relatively weaker rebound resistance exerts shear stress on the layer having relatively stronger rebound resistance, thereby effectively enhancing the arc rebound resistance performance. The degree of arc rebound on the outer arc side of a curved electrode assembly is greater than the degree of arc rebound on the inner arc side thereof. Arranging the electrode assembly having relatively stronger arc rebound resistance on the outer arc side and the electrode assembly having relatively weaker arc rebound resistance on the inner arc side effectively reduces the difference in arc rebound between the electrode assemblies of the curved electrode assembly, thus allowing for better fit between the electrode assemblies and ameliorating the problem that curved electrode assemblies are prone to arc rebound and black spot phenomena.
Resumen de: WO2025138118A1
A secondary battery and an electronic apparatus, which belong to the technical field of batteries. By means of an outer arc anode active material layer of an anode piece curved in a first direction X, the anode piece is divided, in the direction from inside to outside, into a first active material layer and a second active material layer, and same is made so that the mass content of a binder in the first active material layer and an inner arc anode active material layer are greater than the mass content of a binder in the second active material layer; the inner arc anode active material layer and the first active material layer that have a higher binder mass have relatively strong opposing movement prevention capabilities, whereas the second active material layer having a lower binder mass has relatively weak opposing movement prevention capabilities; when the anode piece is used as an electrode assembly, the second active material layer having relatively weak opposing movement prevention capabilities produces shear stress on the inner arc anode active material layer and the first active material layer having relatively strong opposing movement prevention capabilities, where the production of said shear stress can effectively reduce the degree of oppositional arc movement.
Resumen de: US2025219270A1
An all-solid-state rechargeable battery capable of preventing generation of short circuits may be provided by securely disposing the positive electrode current collector in the desired position as much as possible or by detecting an arrangement issue of the positive electrode current collector in an early stage of manufacturing process. an all-solid-state rechargeable battery according to an embodiment includes a positive electrode layer, a negative electrode layer, a solid electrolyte layer disposed therebetween, and an insulating layer configured to suppress short-circuiting caused by contact between the positive electrode layer and the negative electrode layer, where the solid electrolyte layer is stacked on both surfaces of the positive electrode layer, respectively, the negative electrode layer is stacked on a surface of the respective solid electrolyte layer on an opposite side to the positive electrode layer, respectively, and the insulating layer is disposed on a side cross-section of the positive electrode layer to cover the positive electrode layer, where the positive electrode layer comprises a thin positive electrode current collector and a positive active material layer stacked on both surfaces of the positive electrode current collector, respectively, and where the insulating layer enables a position of an outer edge of the positive electrode current collector covered by the insulating layer to be optically identifiable through the insulating layer.
Resumen de: US2025219271A1
An electrode assembly, a battery cell, a battery, and an electrical device are described. The battery cell includes a negative electrode plate and a positive electrode plate. The negative electrode plate includes a porous current collector and a first tab connected to at least one end of the porous current collector. The positive electrode plate includes a body portion and a second tab connected to at least one end of the body portion. The body portion and the porous current collector are stacked along a thickness direction of the porous current collector. Along a first direction, neither end of the porous current collector extends beyond the body portion. The first direction is perpendicular to the thickness direction of the porous current collector.
Resumen de: US2025219269A1
A main object of the present disclosure is to provide a method for disposing of a battery, with which the battery can be deactivated well. The present disclosure achieves the object by providing a method for disposing of a battery, the method including: a soaking step of soaking a battery including an Al terminal in a treatment liquid to decrease a voltage of the battery by causing outer short circuit through the treatment liquid, wherein the treatment liquid contains water, a supporting salt, and an additive that prevents the Al terminal from eluting; and a concentration of the additive in the treatment liquid is a minimum concentration CMIN, that is capable of preventing the Al terminal from eluting, or more.
Resumen de: US2025219272A1
An electrode assembly in which a first electrode and a second electrode having a sheet shape and a separation film interposed therebetween are wound based on an axis to define a core and an outer circumference is provided. The first electrode and the second electrode respectively includes an uncoated portion not coated with an active material layer on a longer edge end; and a coated portion having an active material layer coated on a region excluding the uncoated portion. The first electrode includes an insulation layer that covers at least a portion of the uncoated portion and at least a portion of the coated portion along a winding direction. The uncoated portion may be bent in a radial direction of the electrode assembly, and the bending point may be spaced apart from the axial end of the insulation layer.
Resumen de: WO2025140375A1
Porous carbon for a negative electrode material and a preparation method therefor. In a Raman spectrogram of the porous carbon, the ratio (ID/IG) of D peak intensity (ID) to G peak intensity (IG) is 0.10-1.50; and in an X-ray diffraction pattern of the porous carbon, the diffraction angle 2θ of a (002) crystal plane is 24.00-26.53°, and the specific surface area BET of the porous carbon is 600-3000 m2/g. A composite material comprising the porous carbon, a negative electrode sheet comprising the composite material, and a lithium ion secondary battery. The porous carbon material has desirable properties, such as graphitization degree and pore structure. The composite material can be used as a battery negative electrode material, and can significantly improve the electrical properties of the battery. The methods for preparing the porous carbon and the composite material are simple and easy to operate, and can be applied to batch production.
Resumen de: WO2025140372A1
Disclosed in the present utility model is a water inlet and outlet structure of a battery pack with externally-mounted sensors. A water inlet and a water outlet are provided on a battery pack, and the water inlet and the water outlet are respectively in communication with a flow channel starting end and a flow channel termination end inside the battery pack; sensors are respectively arranged on a side wall of the water inlet and a side wall of the water outlet; the sensor arranged on the side wall of the water inlet is used for collecting the temperature and water pressure of a refrigerant liquid at the position of the water inlet; and the sensor arranged on the side wall of the water outlet is used for collecting the temperature and water pressure of the refrigerant liquid at the position of the water outlet. The present utility model aims to improve the design of the sensors in the regions of the water inlet and the water outlet of the battery pack, save on the internal design space of the battery pack, improve the reliability and convenience of information acquisition, and reduce the after-sales maintenance cost while reducing the manufacturing cost.
Resumen de: WO2025138581A1
A high-voltage box (100), comprising a box body (10), a cover plate (20) covering an opening of the box body (10), and electrical components provided in an accommodating space in the box body (10). The box body (10) comprises a first side plate (101) and a second side plate (102) opposite to each other; the accommodating space is located between the first side plate (101) and the second side plate (102); the electrical components comprise a battery management system (302), a positive electrode fuse (305) on a positive electrode loop and/or a negative electrode fuse (306) on a negative electrode loop; and the battery management system (302) is close to the first side plate (101), and the positive electrode fuse (305) and the negative electrode fuse (306) are close to the second side plate (102).
Resumen de: WO2025138540A1
A non-aqueous electrolyte and a lithium-ion battery, the non-aqueous electrolyte comprising a lithium salt, an additive, and a solvent, and the additive comprising an o-phenylene trimethyl silicon oxyborate compound. According to the provided non-aqueous electrolyte, not only can the technical problem in the prior art of the service life of a lithium-ion battery being shortened when cycling and storage are carried out under high-temperature conditions be solved, but also the non-aqueous electrolyte can also have good overcharge prevention capabilities, so as to protect a battery cell.
Resumen de: WO2025138176A1
The present invention belongs to the technical field of lithium iron phosphate materials, and provides a modified iron phosphate material and a lithium iron phosphate material, and preparation methods therefor and the use thereof. The modified iron phosphate material is integrally in a sheet shape and comprises zirconium phosphate of a lamellar structure, wherein elemental silver and lithium oxide are loaded between lamellas of the zirconium phosphate, and iron phosphate is formed on the outer surface of the zirconium phosphate. The modified iron phosphate material can be further prepared into a lithium iron phosphate material for use in a battery, and can improve the rate capability, coulombic efficiency, capacity and conductivity of the battery. The preparation methods for the modified iron phosphate material and the lithium iron phosphate material are simple and can realize industrial production.
Resumen de: WO2025138189A1
An oxyhalide solid-state electrolyte, a preparation method therefor, and a battery. The general formula of the oxyhalide solid-state electrolyte is Li 2a+bM bO aX' cX" d, wherein M is selected from Ta, In, or Zr, X is selected from the halogens, 0.5≤a≤1.6, 1≤b≤1.5, 5≤c+d≤7.5, and both c and d are numbers greater than or equal to 0. In a humid environment, the ionic conductivity of the oxyhalide solid-state electrolyte is reduced by very little in comparison to when same is in a dry environment, and the oxyhalide solid-state electrolyte still has good ionic conductivity.
Resumen de: WO2025138201A1
Disclosed in the present application are an anti-explosion structure, a battery, and a battery pack. The anti-explosion structure comprises a cover plate and an anti-explosion recess; the anti-explosion recess comprises a first sub-recess and a second sub-recess, the thickness of the cover plate at the location of the first sub-recess is H1, and the thickness of the cover plate at the location of the second sub-recess is H2, where H1 < H2; wherein at a first pressure, the cover plate at the first sub-recess opens, and at a second pressure, the cover plate at the second sub-recess opens, the first pressure being P1, where 0.5 Mpa < P1 < 1.5 Mpa, and the second pressure being P2, where 1.5 Mpa ≤ P2 < 2.5 Mpa.
Resumen de: WO2025138984A1
A carbon material, a negative electrode material and a battery. The carbon material has pores; the total pore volume of the carbon material is 0.5 cm3/g to 1.6 cm3/g; and the crushing strength of the carbon material is U1 kN/cm2, and 0.05≤U1≤0.3. The carbon material has a suitable porosity, and can provide enough accommodating space for a silicon material and relieve the volume expansion of the silicon material; moreover, the crushing strength of the carbon material can be controlled within a suitable range to enable the carbon material to have a good structural stability, and therefore the collapse and fragmentation of the structure of the carbon material caused by volume expansion during lithium intercalation and deintercalation can be reduced, side reactions can be decreased, and the capacity and cycle performance of the negative electrode material can be improved.
Resumen de: WO2025137906A1
A lithium extraction and deintercalation electrode plate and a manufacturing method therefor and a use thereof. An active layer of the lithium extraction and deintercalation electrode plate comprises a lithium-rich positive electrode material after delithiation and alginate. The alginate is used for improving the hydrophilicity of the electrode plate, and at the same time, a hydrogel structure is produced by the alginate and dissolved-out metal ions under the gelation effect generated in a water flow environment during a lithium intercalation and deintercalation cycle, so that lithium ion transport can be enhanced; the mechanical properties of the electrode plate can be improved, and the stability thereof in all directions can be maintained, thereby solving the problems of falling-off of substances and poor stable lithium-ion transport capability caused by insufficient mechanical stability of the electrode plate during long-term use.
Resumen de: WO2025137966A1
The present invention relates to the technical field of analytical chemistry, and in particular to a measurement method for nickel, iron, copper and manganese in a battery material, comprising: first measuring the content of a manganese element, the content of an iron element, the content of a copper element, and the total amount of nickel, iron, copper and manganese elements, respectively, and then calculating the content of the nickel element on the basis of the total amount of nickel, iron, copper and manganese and the contents of the manganese element, the iron element and the copper element. During measurement of the content of the manganese element in the battery material, sodium pyrophosphate is used as a masking agent, such that Fe3+ can be masked while disproportionation of Mn3+ is inhibited, thereby achieving a double-masking effect, and ensuring the measurement accuracy of the manganese content. Therefore, the objective of accurately measuring the contents of four elements, i.e., nickel, iron, copper and manganese, in the battery material is achieved. In the measurement method, no expensive measurement device is required, and a constant analysis means is used; and by efficiently using the masking agent, the interference of coexistence elements on a specific element measurement method is effectively avoided, thereby achieving a stable and reliable measurement result.
Resumen de: US2025219267A1
A cylindrical battery cell includes an electrode assembly having a first electrode tab with a first polarity and a second electrode tab with a second polarity; a battery can having an open portion formed at a lower end and a closed portion formed at an upper end, configured to accommodate the electrode assembly through the open portion, and electrically connected to the second electrode tab; a cell terminal electrically connected to the first electrode tab, exposed to an outside of the battery can through the closed portion of the battery can, and electrically insulated from the battery can; a first current collecting plate having a first surface and a second surface opposite to the first surface, wherein the first surface is coupled to the first electrode tab and the second surface is coupled to the cell terminal; and a terminal fastening member configured to mechanically fasten the cell terminal and the first current collecting plate.
Resumen de: US2025219268A1
A main object of the present disclosure is to provide a method for disposing of a battery, with which the battery can be deactivated well. The present disclosure achieves the object by providing a method for disposing of a battery, the method including: a soaking step of soaking a battery including an Al terminal in a treatment liquid to decrease a voltage of the battery by causing outer short circuit through the treatment liquid, wherein the treatment liquid contains water and a supporting salt; and the Al terminal includes, on at least a part of its surface, a protective layer that prevents the Al terminal from eluting to the treatment liquid.
Nº publicación: US2025219265A1 03/07/2025
Solicitante:
NINGDE AMPEREX TECH LIMITED [CN]
Ningde Amperex Technology Limited
Resumen de: US2025219265A1
An electrode terminal includes a first portion and a second portion arranged in a first direction. The first and second portions are connected to the electrode assembly and have, respectively, a first connection region and a second connection region. The sealing member is connected to the electrode terminal and disposed on one side of the electrode assembly in a second direction perpendicular to the first direction. In an extension direction of the electrode terminal, the first connection region has a first edge away from the sealing member and a second edge close to the sealing member, and the second connection region has a third edge away from the sealing member and a fourth edge close to the sealing member. A minimum distance between the first and third edges is D1, a minimum distance between the second and fourth edges is D2, and D1 and/or D2 is greater than 0.