Resumen de: CN120627171A
本发明属于中深层地热供暖技术领域,涉及一种闭式取用热一体循环的中深层地源热泵系统及其运行方法。包括U型地热井;所述U型地热井出口分别与板式换热器第一入口和回热器第一入口连接;所述板式换热器第一出口和所述U型地热井入口连接;所述回热器第二出口和压缩机连接;所述压缩机和气体冷却器第一入口连接;所述气体冷却器第一出口和所述回热器第二入口连接;所述回热器第一出口和所述U型地热井入口连接。本发明减少了中间换热环节、降低了运行能耗,进而提升了地热能利用的综合效率。
Resumen de: CN120627423A
本发明提供了一种高效利用清洁能源的热电联产系统,涉及多能互补及新型储能技术领域,包括太阳能集热及储热子系统、地热利用子系统、双压ORC发电及回热子系统和冷却水子系统;本发明整合了太阳能和地热能两种清洁能源,通过双压ORC循环实现了能源的梯级利用,高温太阳能驱动高压级,低温地热能驱动低压级,提高了不同品位能源的利用效率;同时,利用地热余热进行供暖,实现了热电联产,进一步提升了能源综合利用率;为克服太阳能的间歇性和波动性,设置了储热子系统,当太阳能不足以支撑发电工作时,由储热子系统供能。
Resumen de: CN120627429A
本发明公开一种太阳能驱动的地热水梯级增温系统,包括出井泵、平板集热器换热水箱、平板集热器方阵、循环泵、真空管集热器换热水箱、真空管集热器方阵、CPC集热器换热水箱、CPC集热器方阵、PTC集热器换热水箱、PTC集热器方阵和回灌泵;各换热水箱通过循环泵与对应的集热器方阵相连,前一个换热水箱能够与回灌泵输入端和下游的各换热水箱连通;当地热水温度小于目标温度时,选择下游集热效率最高的集热器方阵对其进行加热,若升温后的地热水温度小于目标温度,则继续选择下游集热效率最高的集热器方阵加热,以此循环直至达到目标温度或在PTC集热器换热水箱中完成换热。通过集热器方阵之间的协同集热作用,使系统在全温度范围内都能保持较高的集热效率。
Resumen de: CN120627430A
本公开涉及地下水回灌装置技术领域,本公开的一个实施例提供了一种地热水回灌装置,包括底座,所述底座的顶部分别安装有回流井和储水罐;所述储水罐外表面的左侧安装有排水管和连通管,所述连通管的底端深入回流井的内部,所述储水罐的顶部滑动安装有连通筒、进水管,所述储水罐内部的底部密封套设有活塞。本装置经过重新设计,利用了虹吸原理实现地热废水的回灌,大大降低了装置在运行时的能耗,并显著提升了装置的可靠性,利用活塞所受来自弹簧一的压缩弹力和位于活塞上方的地热废水的变化水压(水量)之间的压力差自动调节活塞的高度,从而大大降低了装置在运行时的能耗。
Resumen de: CN120638898A
本申请提供了一种基于自然循环的漂浮式地热温泉热伏发电系统,涉及热伏发电技术领域,系统包括冷端自然循环模组、内部填充有传热工质,用于浸没于温泉内,以将温泉水的热量传递至传热工质的热端自然循环模组、以及由上至下设置的冷端和热端组合的热电模组;其中,冷端与冷端自然循环模组接触,热端与热端自然循环模组接触,以利用河水和传热工质的温差发电;其中,热端自然循环模组设置有浮力套管,浮力套管用于支撑热端自然循环模组漂浮于温泉内,以使热端自然循环模组的上方的热电模组和冷端自然循环模组与温泉水脱离接触。通过本发明提供的系统,解决现有了热伏发电系统增设外部动力源驱动工质循环所导致的能耗高的问题。
Resumen de: CN120622745A
本发明属于地热水开发技术领域,具体涉及一种利用电场强化地热尾水回灌效率的系统及方法。本发明提供了一种外加离子以及外加直流电场和纳米气泡的结合方式,采用螯合树脂Tulsimer® CH‑90Na、氯化钙酸化液、外加直流电场及纳米级气泡的方式多方面提高回灌效率。首先加入螯合树脂Tulsimer® CH‑90Na及氯化钙可以间接和直接的增加回灌水中钙离子的数量,对于岩芯孔隙体积具有一定的扩大作用;之后对回灌水进行少量适量酸化减少尾水回灌中生成沉淀发生堵塞;最后外加直流电场和纳米气泡的结合,能够有效提高储层的连通性,从而提高地热尾水的回灌效率。
Resumen de: CN120627426A
本申请涉及太阳能跨季节储释热地源热泵系统、平衡控制方法及装置,涉及地源热泵系统技术领域,其包括:太阳能集热子系统,用于收集并储存太阳能热量;地源热泵子系统,包含分区布置的地埋管换热器群;跨季节储热装置,用于存储和释放太阳能热量并与地埋管换热器群热耦合,所述跨季节储热装置为地下混凝土结构,内部设有高温层、中温层和低温层三个温度梯度区。本发明通过动态负荷分配机制与分层储热策略的协同作用,能够有效缓解地源热泵系统长期运行导致的土壤冷热堆积问题。核心换热区与缓冲调温区的差异化设计结合多目标优化算法,使年度累计取热量与补热量差值控制在5%以内,显著提升土壤热场的自恢复能力。
Resumen de: CN120627419A
本申请涉及分离式热管太阳能技术领域,公开了分离式热管太阳能跨季节双源热泵系统、控制方法及补热策略,系统包括:太阳能集热器、热管蒸发段、冷凝段、储热罐、四通阀、地源热泵与地埋管系统;方法包括:根据太阳能集热器的热量输出和储热罐的温度分层;启用热管蒸发段直接向末端供热;启动地源热泵补热模式;通过四通阀控制,调节太阳能与地源热泵之间的运行模式;通过变频水泵调节储热罐内热水流动;动态调整补热量、储热优先级和运行模式。本申请通过引入分离式热管结构,使太阳能集热器与热泵系统实现热力解耦,避免了传统一体化管路在日照波动时热传输效率大幅下降的问题,提升了热能传输的稳定性,而且简化了控制逻辑。
Resumen de: CN120627172A
本发明属于中深层地热供暖技术领域,涉及一种中深层地热能闭式取用热一体供暖系统及其运行方法。通过同轴套管换热器实现地热能的闭式循环取热,其外管和内管的连通结构使工质能够在地下循环吸热;板式换热器在系统启动阶段直接利用高温工质换热供热,提升响应速度;闪蒸罐根据工质状态进行气液分离,气相工质进入后续热泵循环提温,液相工质返回地热取热回路,实现能量梯级利用;回热器通过回收余热预热工质,与压缩机、气体冷却器和膨胀阀构成高效热泵循环,显著提升系统能效。本发明减少了中间换热环节、降低了运行能耗,进而提升了地热能利用的综合效率。
Resumen de: CN120627431A
本公开提供了一种地热能供暖制冷系统及其控制方法,涉及地热能利用技术领域,具体实现方案为:将中深层地热子系统和浅层地热子系统相结合,以使供暖制冷终端提供供暖服务或者制冷服务,这样可以降低地热能供暖制冷系统的施工成本和风险;在供暖初期、供暖中期或者制冷初期,控制模块控制中深层地热子系统以使供暖制冷终端提供供暖服务或者制冷服务;在供暖后期或者制冷后期,控制模块控制中深层地热子系统和浅层地热子系统以使供暖制冷终端提供供暖服务或者制冷服务,这样可以在降低施工成本和风险的前提下,满足供暖制冷终端的供暖制冷需求,降低地热能热量衰减。
Resumen de: WO2025188656A1
A system can include: a heat storage medium (e.g., soil, dirt, gley, sand, earth, bedrock, gravel, clay, silt, loam, rock, talus, scree, volcanic material, glacial debris, humus, and/or other earthen material), a heat transfer mechanism (e.g., resistive heater, inductive heater, forced air heater, forced fluid heater, etc.), and a heat output mechanism (e.g., thermoelectric device, fluid coupling, etc.). A method can include heating a heat storage medium with a heat transfer mechanism and extracting heat from the heat storage medium using a heat transfer mechanism.
Resumen de: CN120627432A
本申请提供一种跨季岩土储能循环利用系统,涉及地热装置的技术领域。包括岩土储能换热系统、热泵系统、切换管网和电锅炉蓄热系统;所述岩土储能换热系统用于与岩土换热,所述热泵系统与所述岩土储能换热系统连接,所述热泵系统用于向用热建筑换热;所述电锅炉蓄热系统包括锅炉加热组件、蓄热组件和释热组件;所述锅炉加热组件和所述蓄热组件连接,所述蓄热组件用于蓄热;所述释热组件分别控制与所述蓄热组件和所述锅炉加热组件连接;所述释热组件与所述切换管网换热,所述切换管网分别控制与所述岩土储能换热系统或用热建筑换热。本申请能够改善地下岩土的热量平衡的问题。
Resumen de: CN120627428A
本发明属于矿井领域,具体地说是一种矿井地热高效开采与能量转换系统,系统包括地热采集模块、能量转换模块与控制与检测模块;所述地热采集模块,包括地热井与多级用户系统;所述能量转换模块,包括一级换热器、二级换热器、三级换热器、蒸发器与冷凝器;所述控制与检测模块,包括智能控制系统与数据采集与分析系统。本发明有以下有益效果:高效能量转换:最大限度地提取地热水中的热量,提高了能量转换效率;协同开采技术:将地热能作为一种可再生能源进行协同开发,既解决了矿井高温问题,又实现了地热能的高效利用;智能化管理:引入智能控制系统和数据采集与分析系统,实时监控地热资源的温度、压力等参数,确保系统的稳定运行。
Resumen de: US2025283382A1
The various embodiments described herein include systems and methods for installing geothermal loops using coiled tubing. In one aspect, a system for installing geothermal loops includes a geothermal loop spooled on a geothermal loop reel that is mounted on a first axle. The system includes a coiled tubing string configured for inserting the geothermal loop into a borehole. The coiled tubing string is spooled on a coiled tubing reel that is mounted on a second axle. As the geothermal loop is inserted into the borehole, the geothermal loop is configured to unspool from the geothermal loop reel, the coiled tubing string is configured to unspool from the coiled tubing reel, and the geothermal loop and the coiled tubing string are configured to move at substantially similar speeds.
Resumen de: CN120609150A
本发明涉及地热能技术领域,尤其涉及一种多尺度信息融合的地热异常区提取设备,包括承载板,所述承载板的顶部固定安装有储料罐,所述储料罐的一端连通有喷料管,所述喷料管的一端连通有箱体,所述箱体的底端连通有连接管,所述连接管的底端连通有喷料头,所述喷料管的外壁固定安装有抽吸泵,所述储料罐的内部设置有用于搅拌涂料的搅拌机构,本发明通过抽取地下水时,抽水管上部气体多会使气压大、水流缓,导致涡轮和转轴转速降,离心块靠近储气球,活塞杆压缩气体入竖管,推动推杆使密封板脱离,气体经排气管入收集箱,从而削弱了因气体堆积导致的抽水效率低下的问题,有效缩短了地下水的采集时间,保障了地热异常区提取工作的进度。
Resumen de: CN120613763A
本发明涉及热电联产系统优化技术领域,具体为一种基于地热长时储能的热电解耦系统及控制方法。通过构建中低温地下含水层储能单元(ATES),结合电热泵机组(EHP)回收热电联产机组(CHP)余热,协同运行实现CHP深度热电解耦。通过智能调度策略动态分配供热比例,提升热电联产机组(CHP)发电调节范围,提高风电消纳能力,降低风力发电弃电率,适用于高风电渗透率的集中供热场景。
Resumen de: PL447947A1
Przedmiotem zgłoszenia jest układ termoregulacji budynku zawierający gruntowy powietrzny wymiennik ciepła. Układ termoregulacji budynku charakterystyczny jest tym, że wyrzutnia GPWC (2) gruntowego powietrznego wymiennika ciepła GPWC (1) skierowana jest do czerpni powietrznej pompy ciepła (3), będącej częścią systemu centralnego ogrzewania (20) budynku (4). Układ termoregulacji budynku charakterystyczny jest tym, że gruntowy powietrzny wymiennik ciepła GPWC (1) połączony jest z co najmniej jedną kurtyną powietrzną.
Resumen de: CN120593415A
本发明涉及地源热泵地埋管施工技术领,特别是涉及一种地源热泵埋入式下井与抗浮装置及其施工工艺,装置包括竖直地埋管、固管器、自动式抗浮机构和连锁式抗浮机构;竖直地埋管包括第一竖直地埋管和第二竖直地埋管;第二竖直地埋管上固定有自动式抗浮机构,第一竖直地埋管上固定有连锁式抗浮机构,固管器滑动套接于所有的竖直地埋管的外侧,且和连锁式抗浮机构连接。施工工艺包括:将自动式抗浮机构和连锁式抗浮机构分别固定安装于不同的竖直地埋管上,控制连接件连接挂钩和第三管卡;安装固管器,控制竖直地埋管下井;使连锁式抗浮机构展开;换热井回填,对定位管进行固定。通过上述技术方案,解决了竖直地埋管下管深度控制以及地埋管上浮的问题。
Resumen de: CN120597776A
本发明公开了一种缓解碳酸岩型地热储层裂隙堵塞的采热过程调控方法,属于深部地热能开发利用技术领域。其中,该方法包括:确定模拟区范围、边界条件以及模型参数,建立场地人工裂隙结构模型;考虑采热流体与储层岩体之间的化学反应,构建人工裂隙型热储层采热过程数学模型;以注入流量、注入流体pH值作为输入数据,计算裂隙渗透率和开采井温度及采热量;对比不同注入流量、注入流体pH值条件下的裂隙结构堵塞程度和系统采热量,以堵塞程度最小化和采热量最大化为目标,确定优选的注入策略;采用所述优选的注入策略应用于实际的地热能开采过程中。通过本发明,可以减缓深部地热储层裂隙堵塞,提高采热效率。
Resumen de: CN120589885A
本发明公开了一种废弃矿井水地热提取的多相流优化装置,涉及地热资源处理技术领域,包括分离腔组件及分别安设在分离腔组件左右两端的第一旋转接头和第二旋转接头,第一旋转接头和第二旋转接头用于实现分离腔组件的可旋转连接及流体密封传输,通过在分离腔组件配合下,利用主分离腔破碎聚团与副分离腔四级分形导流结合,实现气液固“初步分离、精细分离、精准分离、细颗粒控制”的全流程处理,使得分离效率较传统旋流器得到提升,并提高固体颗粒截留率,并利用主分离腔旋转与翼型凸棱阵列协同,使气液分离效率得到极大提升,使得整体大幅减少换热器结垢速率和气体阻塞,并提升了传热系数,使得整体设备的使用寿命长。
Resumen de: CN120589769A
本发明公开了一种片状氧化铝纳米颗粒的制备方法,将铝源溶解在溶剂中得到前驱体溶液,调节pH值至8‑10,将分子筛模板剂加入到前驱体溶液中搅拌分散均匀;在室温下静置使铝源前驱体在分子筛模板剂表面沉积,高温老化处理后过滤、洗涤并干燥产物;所得产物在高温下煅烧去除剩余的有机物同时促进氧化铝的结晶,随后使用模板清除剂去除分子筛模板剂,得到片状氧化铝纳米颗粒;本发明制备出的纳米流体在静置48h后未出现沉淀絮凝现象,分散稳定性优异;同时粘度低,粘度受温度梯度变化的影响小,在地热储层裂缝中不易沉淀和堵塞,因此在地热能开发中具有广阔的应用前景,有助于提高地热能的利用效率,减少能源消耗和环境污染。
Resumen de: CN120593416A
本发明涉及基于多级压裂增渗的增强型地热系统U型井换热方法,涉及地热开发技术领域,包括以下步骤:裂缝网络构建;换热介质优化;热交换控制。创新性地将油气藏压裂技术移植至地热开发领域,核心在于:在U型井的水平换热段实施多级定向水力压裂,构建高密度分支裂缝网络,形成“毛细血管式”换热结构。相较于传统的地热开发技术,换热面积指数级增长:裂缝网络使有效换热面积提升至传统光滑井壁的10倍以上;取热效率突破:单井热能提取率提高40%‑70%,尾水温度提升15‑25℃;系统寿命延长:裂缝网络延缓热突破现象,延长经济开采周期;成本优势:利用成熟压裂工艺,较钻探超长水平井降低成本30%以上。
Resumen de: CN120593414A
本发明提供了一种地热能开发装置及方法,地热能开发装置包括第一地热井、酸性气体存储单元及第二地热井;第一地热井具有用于伸入至地热储层内的水平井段,水平井段上开设有多个压裂开口;酸性气体存储单元的输出端与第一地热井的进口端连通,用以向第一地热井内通入酸性气体;第二地热井的一端部用于伸入至地热储层内并位于多个压裂开口的上方,以使经多个压裂开口流入至地热储层内的酸性气体与经第二地热井流入至地热储层内的水反应形成酸性物质,以对地热储层的裂缝进行清堵。本发明解决了现有技术中的利用压裂单井换热容易出现堵塞,导致换热效率较低的问题。
Resumen de: WO2025181085A1
A computer-implemented method of determining configuration parameters for a nested fluid transport pipe consisting of an inner and outer pipe. The method involves receiving design constraints for the pipe and performing a computational fluid dynamics simulation to determine a swirl number that represents the swirling motion of the fluid stream. The simulation is performed under the condition that the inner pipe is centred with respect to the outer pipe. Based on the determined swirl number, the method calculates at least one configuration parameter for the nested fluid pipe to achieve the desired level of swirl in the fluid.
Resumen de: US2025277318A1
The present disclosure is directed to a geothermal hydrogen production system, comprising; a primary liquid circuit circulating a liquid into a geothermal well and returning heated liquid from a well head of the geothermal well, the primary liquid circuit passing through a desalination plant; a first turbine driven by the heated liquid to produce a first mechanical output; and a second turbine driven by the heated liquid to produce a second mechanical output, wherein the first mechanical output drives an electrical generator, configured to power an electrolyser generating hydrogen via electrolysis of fresh water, and the second mechanical output drives an air compressor to provide at least one of a first, a second and a third compressed air supply, wherein the first compressed air supply drives a supply pump to supply salt water to the desalination plant, the second compressed air supply drives a start-up pump to initiate the primary liquid circuit, and the third compressed air supply drives a fresh water pump to deliver fresh water from the desalination plant to the electrolyser.
Resumen de: WO2025021161A1
Embodiments of the present application provide a geothermal energy utilization system, comprising a cold working medium tank, a geothermal well, a thermal working medium storage apparatus, a steam generator, a high-pressure processor and a steam turbine generator. The cold working medium tank is communicated with the geothermal well, and a cold working medium in the cold working medium tank is output into the geothermal well for heat exchange to form a first thermal working medium; the geothermal well is communicated with the thermal working medium storage apparatus, and the first thermal working medium in the geothermal well is output into the thermal working medium storage apparatus; the thermal working medium storage apparatus is communicated with the steam generator, and the first thermal working medium in the thermal working medium storage apparatus is output into the steam generator, so that water in the steam generator is evaporated into steam; the steam generator is communicated with the high-pressure processor, and the steam in the steam generator is output into the high-pressure processor; and the high-pressure processor is communicated with the steam turbine generator, so as to output the steam in the high-pressure processor into the steam turbine generator to drive the steam turbine generator to generate power. The geothermal energy utilization system provided by the embodiments of the present application improves the utilization efficiency of geothermal energy an
Resumen de: EP4610872A1
A computer-implemented method of determining configuration parameters for a nested fluid transport pipe consisting of an inner and outer pipe. The method involves receiving design constraints for the pipe and performing a computational fluid dynamics simulation to determine a swirl number that represents the swirling motion of the fluid stream. The simulation is performed under the condition that the inner pipe is centred with respect to the outer pipe. Based on the determined swirl number, the method calculates at least one configuration parameter for the nested fluid pipe to achieve the desired level of swirl in the fluid.
Resumen de: GB2638665A
A ground source thermal energy transfer device comprising: a conduit 1 (such as a wastewater pipe) having an inner surface (defining a conduit for carrying a fluid) and an outer surface; one or more reinforcement ribs 14 project from and extend around the outer surface of the conduit, the one or more ribs form one or more channels 28 at the outer surface; at least one thermal transfer pipe 34 is arranged within at least one of the one or more channels 28 to exchange thermal energy with a medium surrounding the conduit and/or medium carried within the conduit. The one or more channels may have a height and a width and the diameter of the at least one thermal transfer pipe is substantially equal to the width of the one or more channels. As such, the thermal transfer pipe is received and restrained within the channels and therefore protected by the ribs from compression forces when the conduit is buried in use. The thermal energy transfer device is configured for exchanging thermal energy with another medium such as the surrounding earth or the fluid medium within the conduit.
Resumen de: MX2025009333A
The aspects of the invention include a geothermal system obtains heated heat transfer fluid via heat transfer with an underground reservoir of magma, a wellbore extending between a surface and into the underground reservoir of magma, and a partially cased wellbore having a first borehole portion extending from a surface into an underground magma reservoir. A chamber is located within the borehole and extends at least partially into the underground reservoir of magma. An inlet conduit allows flow of heat transfer fluid from the surface and into the chamber. An outlet conduit allows.flow of heated heat transfer fluid from the chamber toward the surface. The system includes steps of providing a molten salt down a wellbore extending from a surface and into an underground reservoir of magma, receiving heated molten salt from the wellbore, and providing the heated molten salt to a heat-driven process.
Resumen de: CN120575832A
本申请实施例提供一种立体U形井结构及其构建方法,属于地下资源开发领域。包括:注入井和生产井,设置为从地表延伸至目标地层深度,其中,所述注入井与所述生产井位于第一平面;以及U形连接井,用于连接所述注入井和所述生产井,位于与所述第一平面不共面的第二平面,其中,所述第二平面与水平面平行或者呈第一设定角度。该结构突破了传统井型平面布置的限制,能够根据地质条件在三维空间中灵活布置,最大化资源接触面积。本申请适用于石油、天然气、地热能、页岩气等多种地下资源的开发利用,能够显著提高资源采收率,缩短投资回收期,提高项目整体经济效益。
Resumen de: CN120576496A
本发明涉及系统耦合与控制技术领域,具体涉及一种聚光太阳能地热储能实验系统,包括聚光与地表源子系统、井身热流交换子系统、地热源和能储子系统以及地层等效矩阵子系统。聚光与地表源子系统,用于将汇聚的太阳能转换为热能,利用该热能加热指定类型流体工质至预设温度后,将其输送至井身热流交换子系统,由该子系统进行热能传递、地层热交换;地热源和能储子系统,用于对传递的热能进行储集,以保障热能的稳定供应与灵活调配;地层等效矩阵子系统,用于基于地层物理模型和相关参数,进行地层渗流实验、热交换实验、米级储能实验、压裂实验的数值模拟,以辅助剖析地层的渗透性、热导率、热容这些关键物理特性,以及它们对热能存储与传递的影响。
Resumen de: CN120557816A
本发明公开了一种干热岩闭式循环井组取热‑发电一体化系统及方法,包括工质注入系统、地下取热系统、跨临界发电系统和冷却水系统;工质注入系统与地下取热系统相连,并为地下取热系统提供加压后的混合工质;地下取热系统与跨临界发电系统相连,地下取热系统将换热后的混合工质输入跨临界发电系统中进行发电作业;跨临界发电系统与冷却水系统相连。本发明利用闭式同轴套管作为井下换热器提取干热岩热量,不需要开展大规模水力压裂制造地下热储空间,避免诱发地震、节省了水资源消耗和建造成本;并采用四斜井井组作为地下取热装置,井口距离较近,节省了地面发电设备与井口之间的管道连接,同时避免了传统单井长期运行温度衰减快的缺点。
Resumen de: US2025271178A1
A borehole is bored to a borehole target depth in a site and a geothermal heat exchanger is inserted into and then secured in the borehole at the desired depth. Once the heat exchanger has been secured in the borehole, the heat exchanger has a closed distal end and an open proximal end and has at least one fluid path between the closed distal end and the open proximal end, with installation fluid disposed in the fluid path(s). After securing the heat exchanger in the borehole and before excavation of a portion of the site immediately surrounding the borehole, the heat exchanger is temporarily sealed by installing, through the open proximal end, at least one respective internal seal in each fluid path. For each fluid path, the internal seal(s) will be disposed below a respective notional subgrade depth and excavation of the site immediately surrounding the borehole can proceed.
Resumen de: WO2025178161A1
The present invention relates to a seasonal thermal storage system and, specifically, to a dual seasonal thermal storage system capable of storing external heat and cold energy, the system having a seasonal heat energy storage tank and a seasonal cold energy storage tank that employ any one from among aquifer thermal energy storage (ATES), borehole thermal energy storage (BTES), pit thermal energy storage (PTES), and tank thermal energy storage (TTES), so as to store heat emitted from a heat pump or apply heat to the heat pump so that the desired cold energy or heat energy is produced, and being capable of storing external heat energy and cold energy in the seasonal heat energy storage tank and the seasonal cold energy storage tank according to season.
Resumen de: WO2025179156A1
A method of extracting heat from hydrocarbon production or injection wells involves passing heat exchanger tubing down an active production or injection well and securing it. Heat from the formation or from fluids in the production tubing or annulus is extracted and returned to the surface to be used in various ways on a platform, e.g. heating accommodation or water supplies. The heat exchanger tubing may be delivered on coil tubing into the production tubing and anchored above the DHS V, in a retro-fit operation. Alternatively, it may be installed in a sidetrack well via a dedicated kickoff. If installed at the completion of the well, the heat exchanger tubing may be located in the annulus, mounted on the outside of the production tubing; in this event the heat exchanger tubing may extend further into the well to, or even beyond, the production packer.
Resumen de: WO2025178161A1
The present invention relates to a seasonal thermal storage system and, specifically, to a dual seasonal thermal storage system capable of storing external heat and cold energy, the system having a seasonal heat energy storage tank and a seasonal cold energy storage tank that employ any one from among aquifer thermal energy storage (ATES), borehole thermal energy storage (BTES), pit thermal energy storage (PTES), and tank thermal energy storage (TTES), so as to store heat emitted from a heat pump or apply heat to the heat pump so that the desired cold energy or heat energy is produced, and being capable of storing external heat energy and cold energy in the seasonal heat energy storage tank and the seasonal cold energy storage tank according to season.
Resumen de: WO2025176984A1
A ground source thermal energy transfer device comprises a wastewater pipe having an inner surface defining a conduit for carrying a fluid and an outer surface. One or more reinforcement ribs project from and extend around the outer surface of the wastewater pipe. The one or more ribs form one or more channels at the outer surface. At least one ground source thermal transfer pipe is arranged within at least one of the channels to exchange thermal energy with the ground surrounding the conduit and/or with a medium carried within the conduit. The thermal energy transfer device is configured for exchanging thermal energy with the surrounding earth or the fluid medium within the conduit. The thermal transfer may be used for heating and/or cooling via the exchange of thermal energy between the thermal transfer fluid carried by the thermal transfer pipe and the fluid of a heating/cooling system.
Resumen de: DE102025104858A1
Um mit einfachen Mitteln einen sicheren langfristigen Betrieb einer Erdwärmesonde zu ermöglichen, schlagen einige Ausführungsformen ein Erdwärmesondenanschlussbauteil (10) zum Anschließen einer Erdwärmesonde (12) an horizontal verlaufende Anschlussrohre (26, 28) vor, das eine Vorlaufrohrverzweigung (40, 40.1, 40.2), eine Rücklaufrohrverzweigung (42, 42.2, 42.2) und eine Revisionsschachtzugangseinheit (44) aufweist. In die Revisionsschachtzugangseinheit (44) münden Verlängerungen eines Sondenvorlaufrohrs (20) und einen Sondenrücklaufrohrs (22), so dass diese einfach mit Messgeräten oder Sanierungsgeräten zugänglich sind.
Resumen de: DE102024000622A1
Der Erfindung, welche eine Verfüllanordnung (1) und ein Verfahren zum Verfüllen einer in ein vorbereitetes Bohrloch (29) über eine Bohrlocheingangsöffnung (49) eingebrachten Erdwärmesonde betrifft, liegt die Aufgabe zugrunde, eine Lösung anzugeben, womit ein einfaches Verfüllen einer in ein Bohrloch (29) eingebrachten Erdwärmesonde ohne zusätzlich notwendige einmalig genutzte Verfüllleitungen oder Verpressschläuch realisiert wird und wobei die Verfüllanordnung (1) der Erdwärmesonde robust ausgeführt ist und kostengünstig hergestellt wird. Diese Aufgabe wird anordnungsseitig dadurch gelöst, dass in der vollständig in dem vorbereiteten Bohrloch (29) angeordneten Verfüllanordnung (1) der Erdwärmesonde unterhalb des Sondenfußes (6) ein Rückschlagventil (12) angeordnet ist und dass das Rückschlagventil (12) eingangsseitig mit dem ersten Rohr (7) der Erdwärmesonde und ausgangsseitig mit mindestens einer Austrittsöffnung (20, 22) verbunden angeordnet ist.
Resumen de: GB2700051A
At least one wellhead 18 upstream of a thermoelectric generator (TEG) 26 conveys a flow of warm fluid from a subterranean source 16 to the generator. The wellhead can be connected to at least one other wellhead (40 Fig. 1) downstream of the generator, and fluid flows from the subterranean source via the first wellhead and the TEG to the at least one other wellhead and back to the source (16 Fig. 1). The subterranean source may be a depleted hydrocarbon well containing mainly water and can be recirculated, geothermally reheated and repressurised in a closed-loop operation. Alternatively, open-loop operation can use an active hydrocarbon well 20 which may be connected to a production platform 52 via a wellhead 18, a Christmas Tree 22 and conduits 24, 54, and with the thermoelectric generator both generating electricity and cooling the hydrocarbon fluid enroute to the surface facility. The generator may cool the hydrocarbon fluid to just above or below the wax appearance temperature, and cold-flow processing may be used to convey the fluid downstream of the generator under cold-flow conditions. The electrical energy may be stored in a subsea battery storage arrangement 38. Fig. 3
Resumen de: EP4607106A2
Closed loop wellbore configurations with unrestricted geometry for accommodating irregular or challenging thermal gradients within a thermally productive formation are disclosed. A working fluid is utilized in the loop for extraction of thermal energy there from. The loop and the unrestricted geometry are achieved using magnetic ranging of independent drilling operations which intersect from an inlet well and outlet well to form an interconnecting segment. In conjunction with the directional drilling, conditioning operations are incorporated to condition the rock face, cool the entire system, activate the wellbore for treatment to optimize thermal transfer inter alia. The significant degree of freedom in wellbore configuration is further optimized by the absence of mechanical impediments such as casing or liners in the heat transfer areas.
Resumen de: CN120538191A
本发明涉及地下管组用装置技术领域,尤其涉及一种地热能热量交换装置,包括:换热框,换热框内设有换热管,换热框内通入有换热介质,第一清理机构设置在换热管内,用于清理换热管内沉积的水垢,包括固定连接在换热管两端的安装条;转动连接在安装条之间的螺纹杆;滑动连接在换热管内的安装座头;转动连接在安装座头下方的连接圈;设置在连接圈上的清理刷,固定连接在安装座头下方的安装盘;设置在安装盘上的分离网;以及设置在换热框上的驱动机构。本发明通过在换热管内部配置具备轴向位移清理刷结构,使本发明在持续运行状态下完成管壁结垢清除作业,避免传统清洗工艺必需的停机拆解流程,以实现换热效率的提升以及维护成本的降低。
Resumen de: CN120537279A
本发明提供一种基于浅层地热能交换的地铁车站能源底板,包括底板,所述底板上设置有防水节点,所述防水节点处引出有换热管,所述换热管迂回铺设在所述底板的顶部,所述换热管的两端均设置于所述防水节点处;所述底板的顶部铺设有垫层,所述换热管埋覆在所述垫层的内部;本发明中,换热管铺设并埋伏在底板顶部的垫层内部,实现地铁车站地热能规模化采集而不占用额外地下空间,多条散热管路汇聚于同一防水节点处管过底板,能够大幅减少穿底板节点数量;防水节点内部通过遇水膨胀橡胶层在换热管束与穿底板主管之间形成动态密封结构,适应结构变形,实现动态荷载下的长效防水密封。
Resumen de: CN120521310A
本发明公开了一种适用于构造带状热储的取热不取水的地热井结构,包括构造裂隙带状热储、取热井和回灌井,取热井和回灌井的下端分别与构造裂隙带状热储相连通;n个地热井沿构造裂隙带状热储的构造倾向侧布置,取热井与回灌井间隔布置或回灌井间隔2个取热井布置。本发明为构造带状热储的地热资源的高效开发利用提供了可行的技术方案。
Resumen de: CN120521311A
本公开涉及地热利用技术领域,提供了一种地热能利用装置,所述装置包括位于地上的地上系统和位于地下的地下系统,其特征在于:地上系统包括循环管路,循环管路的输入和输出端分别连接有导入管和输送管;地下系统包括多组管道组件,每组管道组件包括相互对应的上管道和下管道,上管道与输送管相连通;下管道与导入管相连通;上管道和下管道之间通过多个热交换部件相连通,使得循环管路内的工质能够从输送管进入上管道,从上管道流经热交换部件进入下管道,从下管道进入导入管以回输至循环管路中。本装置能够通过多组管道组件与热交换部件的配合,大幅增加工质与地下水体的接触面积,提升地热能的换热效率。
Resumen de: CN120521313A
本发明属于地热能源应用技术领域,特别涉及一种地热蒸汽收集系统,包含蒸汽分离器、加压组件、换热组件及冗余电机。蒸汽分离器由分离筒、风机叶轮和轴流叶轮组成,分离筒侧壁设有热源进管,顶部和底部分别连接蒸汽出管和热水出口。风机叶轮和轴流叶轮同轴固接,用于对分离的蒸汽加压。加压组件包括加热筒、蒸汽筒和预热管,搅拌叶和多组蒸汽叶轮分别安装于加热筒和蒸汽筒内,蒸汽叶轮、冗余电机与风力叶轮、轴流叶轮、搅拌叶保持动力连接。换热组件中换热套A和换热套B分别套设于加热筒和预热管外。该系统通过优化地热蒸汽和热水的处理,提高了资源利用率,显著提升了系统性能。
Resumen de: CN120521340A
本发明提供了一种地温场冷热平衡控制系统,属于控制系统技术领域,包括:室外地源换热模块,该室外地源换热模块包括地源换热器模块,采集设备和集线器,其中采集设备设置于管道系统内,用于地埋井内进行数据采集;工控机,工控机用于对采集到的数据进行数据分析,并下发控制指令至其他设备;地源热泵循环模块,该地源热泵循环模块用于负责将地下传递到室外换热器模块的热能转移到热泵系统,该模块包括循环泵和连接室外地源换热模块的管道以及调节阀。在本申请的技术方案实施过程中,通过对地埋井内的实时数据进行采集,并传输至工控机中,通过工控机对采集到的数据进行分析处理,下发对应的控制指令至其他设备,实现对地温场冷热平衡的控制。
Resumen de: CN120521312A
本发明公开了一种深井废弃矿井水地热提取优化提升装置,涉及钻进式地热提升设备技术领域,包括初级提取仓和循环地热引导组件,所述循环地热引导组件位于初级提取仓的内部,所述循环地热引导组件包括第一下封板和两个第一纵支架,每个所述第一纵支架的外侧面均设有一组延长板,每组所述延长板呈等距梯形分布,且每组延长板自上而下长度依次增大,每个所述延长板的末端均安设有斜面反推板,所述斜面反推板用于持续反弹推动水体,该方法构建水体回流条件,将传统从水体内获取热源,更改为热水汽的提取,过程中无须进行水体的搬运,进而避免水体的随意排放和泄漏,过程中减少水体输送时对热能的损耗,有效提高水体热量的提取效果。
Resumen de: CN120521328A
本发明公开了一种双层水源热泵系统,涉及热泵技术领域,其中,双层水源热泵系统,包括热量采集模块;所述热量采集模块包括至少两组分别作用于不同含水层的地下水的工作水路,且两组所述工作水路通过切换组件择一与用户端进行热量交换,所述工作水路的两端均设置有自吸泵,且同一所述工作水路两端的自吸泵用于择一抽取同一含水层的地下水;且同一所述工作水路两端的所述自吸泵之间设置有预设间距,用于抽取或回灌同一含水层且不同位置的地下水;本双层水源热泵系统,采用多组工作水路,对不同含水层的地下水进行分时择一抽取,避免单一含水层长期使用后可利用温度差降低造成的系统整体运行效率下降。
Resumen de: CN120521327A
本发明属于热泵机组技术领域,尤其是涉及一种集成式中深层地热能热泵机组,包括机组本体以及固定安装于所述机组本体上的出液管和第一回液管,还包括:保护箱,固定设置于所述第一回液管的末端,所述保护箱的内部设有曲形管,所述曲形管的一端与所述第一回液管的末端固定连接,且曲形管的另一端延伸至所述保护箱的外部并固定设有第二回液管,所述曲形管的竖直部内壁固定设有倾斜转动设有第一过滤网。本发明通过“物理过滤+化学阻垢+智能控制”的三重防护体系,系统性解决了现有中深层地热能热泵机组因固体颗粒与水垢导致的堵塞、腐蚀及能效衰退问题,显著提升了系统的可靠性、能效性。
Resumen de: CN120524619A
本发明公开了一种中深层地热管群布局的智能拓扑设计方法,包括获取待设计区域的地热地质参数和地热指标,进行空间划分并构建地热均衡评价指标体系,计算待设计区域地热均衡评分,获取地热管群历史数据构建地热管群数据库,进行地热管群拓扑模型换热模拟获取拓扑优化系数,确定地热管群拓扑设计目标函数和地热管群拓扑设计约束条件,进行多级匹配获得参考地热管群拓扑结构,根据所述地热管群拓扑设计目标函数优化所述参考地热管群拓扑结构获得最优地热管群拓扑结构。该方法能够显著提高地热能的提取效率和地热系统的经济性,同时对于地热管群布局设计的智能化发展有重要意义。
Resumen de: US2025264251A1
A method of extracting heat from hydrocarbon production or injection wells involves passing heat exchanger tubing (6) down an active production or injection well and securing it. Heat from the formation or from fluids in the production tubing or annulus is extracted and returned to the surface to be used in various ways on a platform, e.g. heating accommodation or water supplies. The heat exchanger tubing (6) may be delivered on coil tubing (13) into the production tubing (8) and anchored above the DHSV, in a retro-fit operation. Alternatively it may be installed in a sidetrack well (126) via a dedicated kick-off (124, 125). If installed at the completion of the well, the heat exchanger tubing (206) may be located in the annulus, mounted on the outside of the production tubing (208); in this event, the heat exchanger tubing may extend further into the well (beyond the DHSV) to, or even beyond, the production packer (231).
Resumen de: US2025264091A1
A method for extracting a fuel from a geologic formation comprises heating a target volume in the geologic formation to generate the fuel via thermal conversion of a precursor material, thereby also heating a part of the geologic formation, extracting the generated fuel from the geologic formation; recovering heat from the geologic formation; and using the recovered heat for one or more of: heating the target volume, heating a different target volume, extracting the fuel, recovering the heat from the geologic formation, processing the extracted fuel, and converting the recovered heat into another form of storable energy.
Resumen de: WO2025175066A1
Methods for geothermal well planning and development are provided. This includes: installing fiber optic cables that extend within a plurality of shallow wells, wherein the fiber optic cables support both DTS measurements and DAS measurements; connecting DTS interrogators to the fiber optic cables and configuring the DTS interrogators to measure temperature profiles in the plurality of shallow wells over time; determining planned location of one or more geothermal wells that access a geothermal reservoir from the measured temperature profiles; selecting at least one shallow well to be used for DAS measurements; at each selected shallow well, disconnecting the DTS interrogator from the fiber optic cable at the shallow well and connecting a DAS interrogator to the fiber optic cable at the shallow well; and configuring the DAS interrogator at each selected shallow well to measure an acoustic profile in the selected shallow well over time.
Resumen de: WO2024080871A1
The invention relates to a system (100) and method for installing at least one geothermal probe (200) of a geothermal heat pump below the Earth's surface. The system (100) comprises a drilling tube (101), a drilling device (102) connected to the at least one drilling tube (101) and configured for drilling at least one bore hole, which drilling device (102) comprises a mud motor (103) and a drilling head (104), wherein the drilling tube (101) is configured to provide drilling fluid to the drilling device (102) and configured for the provision of grout into the bore hole.
Resumen de: CN120506730A
本发明涉及一种中深层地热能地埋管及换热系统,属于中深层地热换热领域。本发明所述一种中深层地热能地埋管及换热系统包括若干个U形管单元,所述U形管单元包括两根塑料管体和用来连接两根塑料管体的弯头,所述塑料管体内壁一体连接有热熔胶层,所述热熔胶层内壁嵌设有螺旋状的金属螺旋片。本发明通过对现有中深层地热能地埋管及换热系统进行优化改进,尤其是通过对地埋管的内部结构进行优化,进一步改善地埋管换热效率,尤其使其适用于中深层地热;地埋管的内径越大,其换热效果越好,从而进一步提升中深层地热的利用率。本发明的换热系统的换热效率更高,特别适合中深层地热换热,地热井深度越深,换热效果差距越大。
Resumen de: CN120506198A
本发明公开一种地热单井采灌内外抽洗互换装置及抽洗互换方法,属于地热新能源技术领域;该装置包括:上取水套管,包括上部正扣套管和上套管反扣头;下取水套管,包括下套管反扣头和下部正扣套管;所述上套管反扣头用于与下套管反扣头可拆卸式连接;临时止水短节,包括从上到下依次连接的正扣对接头、上导引管和下导引管;所述上导引管外侧设置有套管外反扣,所述套管外反扣用于与下套管反扣头可拆卸式连接;当套管外反扣与下套管反扣头连接时,所述下导引管伸入下部正扣套管中。本发明一是能提高地热井使用效率,提升地热井寿命;二是能提高回灌效率,提高回灌率;三是利于地热资源开发推广。
Resumen de: CN120507154A
一种水热自驱动循环实验装置及实验方法,属于热性能测试分析技术领域,包括:裂隙模拟模块,裂隙模拟模块具有平板裂隙构造,包括相对设置的第一竖板和第二竖板,第一竖板与第二竖板之间的间隔距离可调,第一竖板和第二竖板均依据裂隙曲线制作而成,且二者面向彼此的表面形状与裂隙曲线相契合;换热模块,换热模块设置于裂隙模拟模块的横向端部,换热模块内设置有沿垂直方向流动的吸热介质,吸热介质用于与平板裂隙内的流体进行热量交换;加热模块,加热模块设置于裂隙模拟模块一侧的底部,加热模块与换热模块之间的间隔距离可调,加热模块用于模拟地下热源,以对平板裂隙内的流体进行加热;检控模组,检控模组用于确定换热模块的换热效率。
Resumen de: CN120502144A
本发明公开了一种绿色、环保的深层地热能利用装置,包括用于抽取的地热抽取泵以及用于支撑地热抽取泵的支撑腿,所述地热抽取泵包括外壳,所述外壳的底部与支撑腿的顶部固定连接,所述外壳的顶部和左侧固定安装有抽取口,所述外壳的内部设置有存放箱和能源转换器,所述能源转换器位于存放箱的底部,所述存放箱的内部与抽取口配合使用。该发明通过在外壳的内部设置有存放箱来实现对于地热水的存放,在将地热水注入到存放箱的内部,在注入的过程中,将水先经过凹型过滤网来实现过滤,在长时间的使用以后,凹型过滤网的内部堆积大量的杂质,如果不及时的清理很容易造成堵塞,因此利用清理机构来实现对于凹型过滤网的清理。
Resumen de: CN120488526A
本发明公开了一种低温地热能源提取装置及方法,涉及地热能源技术领域,其中,低温地热能源提取装置包括换热单元、取热管组、换热管组、以及控制单元;换热单元包括换热罐和多个换热柱,换热柱内设有上隔板、下隔板、调节轴以及驱动组件,上隔板、下隔板以及换热柱的内壁围合形成换热腔室,调节轴设于换热腔室内,沿调节轴的周侧壁间隔设有多个分隔板,多个分隔板将换热腔室分隔为多个扇形换热区,驱动组件驱动调节轴转动,换热柱的侧壁开设有多个检测口,每一检测口与一扇形换热区连通,每一检测口内设有一温差发电片;本发明提供的技术方案能提高地热能源的提取效率。
Resumen de: CN120488525A
本发明公开了一种仿生叶脉分形中深层地埋管换热器及换热系统,涉及换热器结构技术领域,包括换热器的主管道和多个与主管道连通的分支管道,分支管道在主管道上分层布设且呈放射状向外延展,分支管道的密度自上而下逐渐增大,分布形态仿照植物叶脉的分形结构,本发明基于叶脉分形原理,通过分层分区布设多级换热路径,使换热管结构在竖向和水平两个维度上均具备可变密度与适应性分布能力,实现热负荷在地下多深度空间的梯度释放,分支管道的布局密度自上而下逐渐增大,增强地层不同深度的换热耦合能力,从而显著提高换热效率,延缓地源热场饱和趋势,提升地源热泵系统的能效与长期运行稳定性。
Resumen de: HRP20240143A1
The plant for the production of electricity, hydrogen and oxygen using geothermal energy from hot dry rocks consists of: connection (PK) to the river from which water is taken, purifier and filter (PF), hydro-turbine and generator (HG) which converts kinetic energy of the water falling from the river to the hot rocks into electricity, input well (UB) from the surface of the earth to the hot rocks, horizontal well (HB) through the hot rocks where the water is heated, output well (IB) through which the heated water vapour emerges to the surface, steam turbine and generator (PG) where steam energy is converted into electricity, electrolysis unit (SE) for the production of hydrogen and oxygen from water vapour, tanks (T) for storing hydrogen and oxygen, heat delivery element (IT) which delivers heat to heat consumers (TT) and enriches the cooled water with oxygen, connection (PO) for returning the rest of the water enriched with oxygen back to the river and measuring, control and computer circuits (MUR) which measure the parameters of the electricity generation process and computer-control the entire system using artificial intelligence. The invention is applied in a way that produces electricity, hydrogen and oxygen from geothermal energy and enables sustainable and clean production of green energy, using potential energy of water, geothermal energy of hot rocks and electrolysis of water vapour for the storage and reuse of hydrogen and oxygen, while simultaneously returning the
Resumen de: CN120497984A
本发明涉及热电联产机组灵活性改造技术领域,具体为一种地热长时储能耦合深度调峰系统。基于含水层储能单元(ATES)及冷热井对(HW/CW)地热长时储能,结合电热泵机组(EHP)实现了热电联产机组(CHP)余热回收,提高了电网消纳风光电力容量和CHP调峰响应速度;结合电热泵机组(EHP)与两级板式换热器(HX1/HX2)协同储供热运行,实现了CHP三级深度调峰,提升了CHP发电调峰深度及供热范围。总体上,降低了风光弃电率和系统运行成本,适用于大规模风光高渗消纳及热电联产机组深度调峰运行场景。
Resumen de: CN120486353A
本发明公开了一种冻土区加筋土桥台系统及其施工方法,加筋土桥台系统包括加筋土桥台本体、地源热泵调控系统、清洁能源供电系统、监测系统。加筋土桥台本体包括填土、筋材和预制模块化墙面,地源热泵调控系统的地埋循环管群埋深穿透冻土层至稳定土层,热泵主机借助双循环管路,依靠温度传感器数据与气象预报数据,高温季节转移桥台基底热量防冻土融化,低温季节反向补充热量抑冻胀。清洁能源供电系统的热泵主机和监测系统分时供电保障核心功能。监测系统包括温度传感器、应变计和倾角仪。本发明有效解决冻土区桥台稳定性与冻胀融沉难题,兼具经济与社会效益。
Resumen de: WO2025170668A1
The present invention relates to systems and methods for monitoring microseismic activity in a geothermal well system using fiber optic sensing technology. The system includes fiber optic cables installed in multiple wells of the geothermal well system. The fiber optic cables enable simultaneous collection of distributed acoustic sensing (DAS) data, strain measurements, and temperature data. By detecting and localizing microseismic events during stimulation and operation of the geothermal well system, seismic activity is maintained within safety thresholds, providing for safe and effective extraction from the geothermal well system.
Resumen de: WO2025171116A1
The present invention relates to systems and methods for improving drilling performance in horizontal enhanced geothermal system (EGS) wells. The systems and methods include techniques for drilling horizontal EGS wells developed over a series of successful drilling campaigns in which changes to drilling parameters and corresponding drilling performance outcomes were monitored and documented. Through iterative optimization across multiple drilling campaigns, sustained drilling rates of at least 70 feet per hour over run lengths of 2,800 feet in hard rock formations having unconfined compressive strength between 30-50 ksi have been achieved.
Resumen de: US2025257624A1
A rapid assembly and automatic sampling drilling tool for frozen soil layer exploration includes a fixed flow divider, a flow guide pipe, a coring pipe and a drill bit. The fixed flow divider is connected to the drill bit through the flow guide pipe and the coring pipe mounted between the fixed flow divider and the drill bit. Two ends of the flow guide pipe communicate with the fixed flow divider and a main flow channel in the drill bit respectively. Hot water in the fixed flow divider can be conveyed into the drill bit through the flow guide pipe and sprayed from a nozzle arranged on the drill bit for drilling and coring operations. An inlet of the coring pipe communicates with a coring channel in an inner cavity in the drill bit, and a core sample drilled by the drill bit is taken out through the coring pipe.
Resumen de: WO2025166465A1
There is described a system for delivering hot water to a sanitary appliance. The system generally has a geothermal unit having an input port, an output port, and an underground circuit in fluid communication between the input port and the output port, and a pump moving water from the input port, along the underground circuit, towards the output port, said moving cooling the water below a first temperature; a first conduit in fluid communication with the output port of the geothermal unit and receiving water therefrom; a computer processing unit having a plurality of computing devices generating heat when operating, the computer processing unit in thermal exchange communication with the water of the first conduit, said thermal exchange communication cooling the plurality of computing devices while heating the water to a second temperature greater than the first temperature; and a sanitary appliance receiving the water at the second temperature.
Resumen de: WO2025171172A1
Various systems and methods are presented for placing a multi-segmented TRE sheath into an annular space of a geothermal well for purpose of improved electrical or thermal energy generation.
Resumen de: US2025257907A1
A system for geothermal heating comprising: a forced geothermal circuit in communication with a well bore; a well bore heat exchanger; a multilateral channel; a channel casing design; and a pump. A method for geothermal heating comprising: passing a fluid into a thermal circulation system; passing the fluid into a well bore heat exchanger; heating the fluid; passing the heated fluid through a multilateral channel comprising a multilateral channel design casing; and passing a reservoir fluid and the fluid into a heat exchanger. A method for a loop recovery process comprising: passing a circulation fluid into a system for geothermal heating; passing the circulation fluid into a well bore heat exchanger; heating the circulation fluid; passing the heated circulation fluid out of the system for geothermal heating; passing the heated circulation fluid through a heat exchanger of an organic Rankine cycle; and cooling the circulation fluid.
Resumen de: US2025257906A1
A system with a subterranean borchole, a fluid loop located within the borchole and fluidly coupled to a building energy system of a building, and a thermal material located within the borchole configured to enhance the heat transfer between the fluid loop and the surrounding ground.
Resumen de: US2025257631A1
Methods for geothermal well planning and development are provided. This includes: installing fiber optic cables that extend within a plurality of shallow wells, wherein the fiber optic cables support both DTS measurements and DAS measurements; connecting DTS interrogators to the fiber optic cables and configuring the DTS interrogators to measure temperature profiles in the plurality of shallow wells over time; determining planned location of one or more geothermal wells that access a geothermal reservoir from the measured temperature profiles; selecting at least one shallow well to be used for DAS measurements; at each selected shallow well, disconnecting the DTS interrogator from the fiber optic cable at the shallow well and connecting a DAS interrogator to the fiber optic cable at the shallow well; and configuring the DAS interrogator at each selected shallow well to measure an acoustic profile in the selected shallow well over time.
Nº publicación: WO2025171160A1 14/08/2025
Solicitante:
XGS ENERGY INC [US]
XGS ENERGY, INC
Resumen de: WO2025171160A1
A high-thermal conductivity suspension is provided that comprises a high apparent viscosity carrier fluid and a plurality of high thermal conductivity particles. A system for using this high-thermal conductivity suspension to form a compacted high thermal conductivity sheath is also presented which comprises a step of settling the plurality of high thermal conductivity particles previously suspended in the high viscosity carrier fluid via viscosity breaking and a step of consolidating the settled plurality of particles via hydraulic or chemical consolidation. The resulting high thermal conductivity compacted sheath enhances heat transfer from a target location in a geological formation to a working fluid in a closed-loop heat harvester casing within a geothermal wellbore for electrical or thermal energy generation.