Resumen de: EP4607059A1
A wind turbine generator parallel-stage intermediate-speed shaft train connecting structure, comprising a sun shaft (1), a downstream shaft portion, and a high-speed gear (4), wherein the high-speed gear (4) is arranged outside of the downstream shaft portion in an axial direction, an axial position of the downstream shaft portion is fixed relative to a wind turbine generator box (9), and the sun shaft (1) is connected to the high-speed gear (4) by a thin-walled flange ring to allow the thin-walled flange ring to absorb a floating shift of the sun shaft (1) by means of elastic deformation.
Resumen de: AU2024223226A1
The present invention relates to an offshore floating wind turbine foundation comprising at least two outer members arranged around a tower comprising a rotor- nacelle assembly with blades, wherein a number of pair of beams connect the center buoy and said at least two outer members, a pair of beams tapers from the tower towards each of said at least two outer members.
Resumen de: WO2025172752A1
The present invention relates to a vertical floating wind propulsion system that is able to increase the concentration of dissolved oxygen in bodies of water while reducing the concentration of contaminating organic matter under the action of biofilms of anaerobic and aerobic microorganisms, which transform or consume said organic matter in their metabolic processes. The present invention consists of a wind propulsion system, a grooved floating buoy, a system of internal and external culture media, a duct, a sediment collecting base and an anchor. The wind propulsion system captures wind energy to generate rotational movement which is transferred by means of a shaft to a system of thruster propellers, which are arranged inside the duct. As the water rises by hydraulic displacement, organic sediments and microorganisms that can attach to the internal and external culture media are carried with it, forming biofilms. These communities of microorganisms consume excess organic matter in their metabolic processes, reducing the concentration thereof in water. Furthermore, the water that is displaced to the surface can be oxygenated in a more efficient way when it comes in contact with atmospheric oxygen. The system can be located in critical areas in bodies of water and is kept in situ by means of a concrete anchor. The system is designed as a device that neither consumes electricity nor generates polluting emissions as it is wind-powered.
Resumen de: WO2025168348A1
A method of constructing a floatable foundation (100) for a wind turbine generator, the method comprising: providing three column sections (10a-d) at a foundation construction site (S); providing three pontoon sections (11a-c) at the foundation construction site (S); resting the three columns sections (10a-d) on a plurality of first supports (1) at the construction site (S); resting the three pontoon sections (11a-c) on a plurality of second supports (2) at the construction site (S); providing three brace sections (12a-c) at the foundation construction site (S); and fixing each of the three pontoon sections (11a-c) between different pairs of column sections (10a-d) and fixing each of the three brace sections (12a-c) between different pairs of column sections (10a-d).
Resumen de: WO2025169781A1
Provided are a turning multi-layer welding method and a turning multi-layer welded joint in a large structure such as a floating offshore wind power generation facility. The present invention provides a turning multi-layer welding method in which a bracket 6 for reinforcing a standing plate 5 provided on a steel plate 4 is welded to the steel plate 4 and the standing plate 5, the welding method including forming a first welding bead 1 in multiple layers along the short side of a rectangular abutment surface 6a where the bracket 6 abuts the steel plate 4, subsequently placing a second welding bead 2 and a third welding bead 3 on the end section of the first welding bead 1 along the long side of the rectangular abutment surface 6a, and furthermore stretching the second welding bead 2 and the third welding bead 3 onto the steel plate 4 to form said welding beads in multiple layers.
Resumen de: WO2025169578A1
A power generation device (100) comprises: a floating body (1); a connection shaft (2) which is disposed on a first axial center (X1) along the horizontal direction; a pair of rotation bodies (3) which are disposed separately on both sides of the floating body (1) in the axial direction (L) along the first axial center (X1), and which are supported rotatably about the first axial center (X1) with respect to the floating body (1); and a power generation unit which is provided with an input member disposed on the first axial center (X1), and which performs power generation by using a rotation driving force of the input member. Each of the pair of rotation bodies (3) is configured to rotate by receiving the flow of a fluid along the direction orthogonal to the first axial center (X1). The power generation unit is disposed inside the floating body (1). The connection shaft (2) is disposed to penetrate the floating body (1) in the axial direction (L), and connects the pair of rotation bodies (3) and the input member so as to integrally rotate the same.
Resumen de: WO2025163376A1
The invention relates to a floating body (10) having a plurality of balls (30) arranged concentrically around a carrier (20), wherein the balls (30) are fastened to the carrier (20), at least a first subset of the balls (30) is arranged in at least a first plane and at least a second subset of the balls (30) is arranged in at least a second plane opposite to the first plane, and the balls (30) of the second plane are arranged offset with respect to the balls (30) of the first plane in such a way that the balls (30) of the second plane engage in the interspaces between the balls (30) of the first plane.
Resumen de: WO2025162325A1
An anchoring structure (10), a floating wind turbine assembly and a floating wind turbine array. Each anchoring structure (10) comprises an anchor rod (11); a rotary member (12), which is rotatably arranged on the anchor rod (11); an elastic holding member (13), which is arranged between the anchor rod (11) and the rotary member (12); and a mooring cable (14), which comprises a winding section (141) and an extending section (142), the winding section (141) being wound around the periphery of the rotary member (12), a first end of the winding section (141) being fixedly connected to the rotary member (12), a first end of the extending section (142) being connected to a second end of the winding section (141), and a second end of the extending section (142) being connected to a floating wind turbine (20). When the rotary member (12) rotates, the extending section (142) extends or shortens.
Resumen de: US2025253641A1
An offshore structure that is a floatable offshore structure that includes at least one submarine cable connector configured to connect a submarine power cable to an electrical device of the offshore structure. The offshore structure also includes at least one messenger line. A first end of the messenger line is fixed to the submarine power cable and a further end of the messenger line is fixed to the offshore structure.
Resumen de: EP4596389A1
The present invention relates to a device for supporting an offshore wind turbine tower. The device comprises a first body (1), a support body (3) attached to the first body (1), a second body (2) and a plurality of legs (4) attached to the second body (2). The support body (3) has a cylindrical interior and is configured to provide support for and connection of a wind turbine tower (10). The first body (1) comprises a central portion (5) connected to the support body (3) and a plurality of hollow arms (6), connected with the central portion (5). Each hollow arm (6) comprises a through-hole (7) configured to allow a leg (4) to pass through the through-hole. The first body (1) has a volume and a weight configured to provide, when empty, a buoyancy of at least 20% of the weight of the entire device, the weight of the first body (1) being less than 8% of the weight of the entire device. The legs (4) and/or the first body (1) have a locking system configured to lock the relative position between the legs and the first body.
Resumen de: WO2024067992A1
The offshore structure (100, 200, 300, 400, 500, 600, 700, 800), in particular a floatable offshore structure (200, 300, 400, 500, 600, 700, 800), comprising: at least one submarine cable connector (102, 203, 302, 502, 602, 702, 802) configured to connect a submarine power cable (108, 208, 308, 508, 608, 708, 808) to an electrical device (104, 204) of the offshore structure (100, 200, 300, 400, 500, 600, 700, 800), characterized in that the offshore structure (100, 200, 300, 400, 500, 600, 700, 800) further comprises: at least one messenger line (114, 214, 314, 514, 614, 714), wherein a first end (101, 201, 301, 501, 601, 701) of the messenger line (114, 214, 314, 514, 614, 714) is fixed to the submarine power cable (108, 208, 308, 508, 608, 708, 808) and a further end (103, 203, 303, 503, 603, 703) of the messenger line (114, 214, 314, 514, 614, 714) is fixed to the offshore structure (100, 200, 300, 400, 500, 600, 700, 800).
Resumen de: WO2024072780A1
A barge-type wind turbine platform in combination with a heel tank damper includes a barge-type wind turbine platform having a keystone, two pairs of bottom beams, each including two bottom beams connected to opposite sides of the keystone, wherein the combined pairs of bottom beams define a foundation. A U-shaped ballast conduit is mounted or formed within each of the pairs of bottom beams. Each ballast conduit has ballast water therein, the ballast water extending from an outwardly extending portion of each bottom beam of each pair of bottom beams, such that a volume of air is defined between a surface of the ballast water in each outwardly extending portion and an outwardly facing wall of each outwardly extending portion, and an internal damping element is provided within each ballast conduit. A heel tank damper is defined by the ballast conduits and their respective internal damping elements.
Resumen de: CN223177677U
The utility model relates to the technical field of jacket installation, and discloses a four-pile jacket underwater positioning and installing device which comprises a floating crane ship, a first positioning assembly arranged on the outer side of the fixing seat and used for positioning the floating crane ship, a crane base arranged on the outer side of the floating crane ship, and a second positioning assembly arranged on the outer side of the crane base. A crane body is arranged on the outer side of the crane base; through the application of the RTX satellite station difference technology and the deepwater jacket digital visualization technology, the on-site construction efficiency is remarkably improved, meanwhile, underwater operation of divers is avoided, the construction safety is powerfully guaranteed, the application of the technology achieves a good effect in the project, reference is provided for later similar engineering construction, and the construction safety is improved. By means of mature application of the technology, construction tasks are completed in a high-quality and efficient mode, and a safer and more friendly working environment is provided for offshore wind power constructors.
Resumen de: WO2025159447A1
The present invention comprises: a floating body floating on the sea surface; a mooring anchor seated on the seabed; a weight body positioned underwater between the floating body and the mooring anchor; and a plurality of mooring lines for mooring the floating body and having a closed curve shape. The mooring lines include: a first portion, in which a central lower part catches on a weight body mooring line catching part of the weight body; a second portion which passes through a weight body vertical passage in the weight body, and in which a central lower part catches on an anchor mooring line catching part of the mooring anchor; and a third portion which passes through a floating body vertical passage in the floating body and is connected to the first portion and the second portion, and in which a central upper portion catches on a floating body mooring line catching part provided on the floating body.
Resumen de: US2025242896A1
The present application discloses a floating-type wind power generation platform and a floating-type wind power generation system. The floating-type wind power generation platform includes a first transverse connector and multiple floating support components, where the multiple floating support components are arranged at intervals on the water surface in a horizontal direction, and the first transverse connector includes a first connecting rod and an outward-extending plate, the first connecting rod has both ends connected to two adjacent floating support components, and the outward-extending plate extends from the outer side wall of the first connecting rod in a direction away from the center of the first connecting rod.
Resumen de: US2025242895A1
In the energy collection location changing system, a power generation floating body and a collection station setting system are provided so as to be able to perform data communication with each other. The power generation floating body has a power generation storage unit for storing the power generation energy and a navigation unit for navigation of the own base, and the collection station setting system has a location determination unit for determining a recovery position in which the collection station is provided based on at least one of a wind condition and a sea condition, a location notification unit for notifying the recovery position to each of the power generation floating bodies, and a setting unit for providing the collection station in the recovery position, and the navigation unit of the power generation floating body causes the own base to travel to the recovery position.
Resumen de: WO2024170846A1
The invention relates to a semi-submersible float (2-1), in particular for an offshore wind turbine comprising four columns including one central column (4) intended to receive a wind turbine tower (6) and at least three outer columns (8) which are connected to the central column by arms forming lower pontoons (10). The float is free of upper arms connecting the central column to the outer columns and the outer columns and the lower pontoons are each formed by an assembly of planar panels (81 to 86, 101 to 104) each having a polyhedral cross-section. The invention also relates to a method for constructing such a float.
Resumen de: DE102024102639A1
Schwimmkörper (10) mit einer Mehrzahl von um einen Träger (20) konzentrisch angeordneten Kugeln (30), wobei wenigstens eine erste Teilmenge der Kugeln (30) in wenigstens einer ersten Ebene und wenigstens eine zweite Teilmenge der Kugeln (30) in wenigstens einer zur ersten Ebene parallel angeordneten zweiten Ebene angeordnet sind, dadurch gekennzeichnet, dass die Kugeln (30) der zweiten Ebene zu den Kugeln (30) der ersten Ebene derart versetzt angeordnet sind, dass die Kugeln (30) der zweiten Ebene in die Zwischenräume zwischen den Kugeln (30) der ersten Ebene eingreifen.
Resumen de: CN119894765A
The invention relates to a floating support structure (2-1) for an offshore wind turbine, comprising: a lower connector (4) centered on the axis (X-X) of the mast (9) of the wind turbine, said lower connector (4) comprising at least three lower receiving grooves (10) uniformly distributed around the axis of the mast of the wind turbine; an upper connector (6) centered on the axis of the mast of the wind generator, the upper part of which comprises means (14) for receiving the mast of the wind generator and the lower part of which comprises at least three upper receiving grooves (12) uniformly distributed around the axis of the mast of the wind generator; and at least three identical tubular central posts (8), the lower end of which is fitted in one receiving groove of the lower connector and the opposite upper end of which is fitted in one receiving groove of the upper connector (so as to form a floating support tower adapted to the vertical extension of the mast of the wind turbine). The invention further relates to an assembling method of the structure.
Resumen de: WO2024062257A1
A floating structure (1) having three buoyant bodies (3,5,7) for supporting a horizontal axis wind turbine (6) and wind turbine tower (27). The floating structure (1) is provided with a geostationary mooring system that permits it to weathervane in order to head the wind turbine (6) into the wind, and has a wind turbine tower mount (29) for supporting the wind turbine tower (27). A central buoyant body (3) is located partially above water during assembly and tow out from port and is ballasted so that it is underwater when moored offshore, such that the floating structure (1) becomes a semi¬ submersible. The three buoyant bodies (3,5,7) are ship-shaped in form which reduces loads in the mooring system, and are made from stiffened flat plates, which are easier for many yards and fabrication shops to make, compared to cylindrical hulls.
Resumen de: CN223161948U
The utility model relates to the technical field of offshore power generation platforms, in particular to a floating platform for offshore wind power, which comprises a floating platform, a culture hole is formed in the floating platform, and a culture structure is arranged in the culture hole; by means of the breeding structure, the breeding holes are formed in the free space of the top of the floating platform, the breeding cages are placed in the breeding holes, when marine breeding and goods receiving are carried out in the breeding cages, three servo motors are started, output shafts of the servo motors drive winches connected with the servo motors to rotate, and therefore lifting chains can be rolled up; when the floating platform is used, the culture cage can be lifted up from the culture hole, at the moment, marine products in the culture cage can be taken out by opening the opening and closing door, and therefore the free space on the top of the floating platform is utilized, the phenomenon of space resource waste is avoided, and comprehensive utilization of resources and maximization of benefits are achieved.
Resumen de: CN223152194U
The utility model provides an interlayer type corrugated plate floating body power generation device which comprises a fan and a floating body, the floating body is a cylinder, the interior of the floating body is hollow, the inner wall and the outer wall of the floating body are made of corrugated plates, filling materials are poured between the inner wall and the outer wall, and sealing plates are arranged at the two ends of the floating body. The top end of the floating body is connected with the fan; wherein the number of the floating bodies is three or more, and the floating bodies are fixedly connected through connecting pieces; and the floating body is connected with the fan through the connecting piece. Three or more floating bodies are adopted to form a buoyancy structure, sea wave impact can be better reduced, and stability is improved. In addition, the draught fan is connected to the top end of the floating body and is higher than the water surface, and seawater corrosion can be reduced.
Resumen de: WO2025153681A1
An offshore connecting system (1) comprising: an offshore station-keeping system (2) comprising a receiving portion (20) and a pass-through opening (21); one or more submarine electrical cables (3) with respective connection terminals (30); a connecting device (4) comprising a main body (40) removably connectable to the connection terminals (30) such that the main body (40) encloses said terminals (30) within an inner compartment (41); wherein the connecting device (4) is configured to be upwardly inserted through the pass-through opening (21) to be arranged in a predetermined resting position (R) relative to the receiving portion (20) of the offshore station-keeping system (2); and one or more blocking means (5) configured to be selectively arranged in a blocking position (a) for interacting with the connecting device (4) and the receiving portion (20) of the offshore station-keeping system (2) to selectively retain the connecting device (4) in the predetermined resting position (R).
Resumen de: US2025237193A1
A gear shifting device includes a first planetary gear train. The first planetary gear train includes a first ring gear, a first planet carrier, a first planet gear, a sun idler, and a planet idler; the planet idler and the first planet gear are both installed on the first planet carrier; the first planet gear includes a pinion and a bull gear coaxially connected to the pinion; the planet idler and the pinion are both meshed with the inside of the first ring gear and are both meshed with the outside of the sun idler; the pinion can float in the radial direction relative to the first planet carrier; an input shaft is further provided; one end of the input shaft is connected to the first ring gear.
Nº publicación: AU2024213848A1 24/07/2025
Solicitante:
SUBSEA 7 LTD
SUBSEA 7 LIMITED
Resumen de: AU2024213848A1
A mooring arrangement comprises at least two outer anchors, a reaction anchor disposed between the outer anchors and at least two anchor legs that extend outwardly from the reaction anchor to the outer anchors. The reaction anchor has multi-directional effect, being configured to react against outward forces applied by tension in the mutually-opposed anchor legs. Each anchor leg comprises a tensioner, an inner line extending from the reaction anchor to the tensioner, and an outer line extending from the tensioner to the outer anchor. A tensioner line, which may be the inner line or the outer line, is fixed to the tensioner whereas a mooring line extends through the tensioner. An upper section of the mooring line extends from the tensioner to a moored floating body. A lower section of the mooring line forms part of the anchor leg, as either the inner line or the outer line.