Resumen de: AU2023363865A1
Electrochemical cell system (100) which comprises an electrochemical cells arrangement (10), a control unit (20) configured to operate the electrochemical cells arrangement (10) only as electrolytic cells or only as fuel cells, a heat unit (40), external to the electrochemical cells arrangement (10), which is thermally coupled to the electrochemical cells arrangement (10) and which is configured to alternately store heat from the electrochemical cells arrangement (10) to the heat unit (40) and supply heat from the heat unit (40) to the electrochemical cells arrangement (10), and a transfer arrangement (30) configured to alternately transfer heat from the electrochemical cells arrangement (10) to the heat unit (40) and from the heat unit (40) to the electrochemical cells arrangement (10).
Resumen de: WO2025127536A1
Disclosed are a catalyst electrode for ammonia electrolysis and a method for effectively producing same, wherein the ratio of oxides and hydroxides in the catalyst electrode for ammonia water electrolysis is improved by introducing a heat treatment step for heat treatment within a specific temperature range after an electroplating step, and as a result, poisoning by nitrogen oxides is suppressed such that durability is improved, and excellent ammonia water electrolysis performance is achieved.
Resumen de: DE102024125854A1
Verfahren zur Konditionierung einer Elektrolysevorrichtung (10), die zur Erzeugung von Wasserstoff aus Wasser mit Hilfe von elektrischem Strom eingerichtet ist, wobei die Elektrolysevorrichtung (10) vor dem Einbau in eine Wasserstoffproduktionsanlage zumindest einer chemischen Konditionierung über ein Durchspülen der Elektrolysevorrichtung (10) unterzogen wird.
Resumen de: DE102023212702A1
Elektrolysesystem mit einem Elektrolysestack (1), der eine Vielzahl von elektrolytischen Zellen (101) umfasst, die jeweils einen Kathodenraum (102) und einen Anodenraum (103) aufweisen und die dazu ausgebildet sind, Wasser im Anodenraum (103) elektrolytisch in Wasserstoff und Sauerstoff aufzuspalten. Der im Kathodenraum (102) erzeugte Wasserstoff wird über einen Kathodenauslass (2) des Elektrolysestacks (1) und eine hieran angeschlossene Medienleitung (7) einem ersten Gas-Flüssig-Separator (9) zugeführt. Ein zweiter Gas-Flüssig-Separator (15) ist mit dem Kathodenauslass (2) verbindbar. Je nach Druck im Elektrolysestack (1) wird der Kathodenauslass mit dem ersten (9) oder mit dem zweiten Gas-Flüssig-Separator (15) verbunden.
Resumen de: EP4570955A1
The cell (26) comprises a cell casing (34) defining an anodic compartment (36) and a cathodic compartment (38), the anodic compartment (36) comprising an anode chamber (50) and the cathodic compartment (38) comprising a cathode chamber (58), the cell casing (34) comprising a membrane (40) separating the anode chamber (50) from the cathode chamber (58).The anodic compartment (36) defines, within the cell casing (34), an anodic degassing cavity (52) located on top of the anode chamber (50), the cathodic compartment (38) defining, within the cell casing (34), an cathodic degassing cavity (60) located on top of the cathode chamber (58). The cell casing (34) comprises a partition wall (42) tightly separating the anodic degassing cavity (52) from the cathodic degassing cavity (60).
Resumen de: EP4570954A1
The invention relates to a coated diaphragm (16) of an electrochemical device (8) for alkaline electrolysis. The diaphragm (16) comprises an alkaline membrane (18) coated on at least one side with a catalyst layer (20). The catalyst layer (20) is obtained by deposition of at least one metallic catalyst on the membrane (18) by physical vapor deposition, the metallic catalyst being chosen between Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf, Ta, W and any combination thereof.
Resumen de: EP4570745A1
The present disclosure relates to apparatuses for producing hydrogen, and to top-down methods for producing nanoparticles. Different mechanical mills may be used to break down micron sized soil or sand particles and to react the particles with water, particularly sea water.
Resumen de: EP4570744A1
A method for producing hydrogen using a feed stream comprising ammonia is provided. The method can include the steps of: cracking a gaseous ammonia feed in an ammonia cracker to produce a cracked gas stream comprising hydrogen, nitrogen, and unreacted ammonia; cooling the cracked gas stream to a first temperature that is sufficient for condensing at least a portion of the unreacted ammonia to form a dual phase fluid; separating the dual phase fluid in an ammonia separator to produce a liquid ammonia stream and a top gas stream comprised predominately of hydrogen and nitrogen; removing additional ammonia from the top gas stream using a front-end purification system to form a purified top gas stream; further cooling the purified top gas stream to a second temperature that is sufficient for condensing at least a portion of the nitrogen within the top gas stream to form a dual-phase stream, wherein the second temperature is colder than the first temperature; introducing the dual-phase stream to a cryogenic hydrogen separator under conditions effective for separating hydrogen and nitrogen, thereby creating a liquid nitrogen stream and a hydrogen top gas; warming and vaporizing the liquid nitrogen stream to produce a gaseous nitrogen stream; warming the hydrogen top gas to produce a gaseous hydrogen product stream; and recycling the liquid ammonia stream produced by the ammonia separator to a point upstream the ammonia cracker.
Resumen de: EP4570743A1
A method for producing hydrogen using a feed stream comprising ammonia is provided. The method may include the steps of: cracking a gaseous ammonia feed comprising ammonia and at least 0.15% water vapor in an ammonia cracker to produce a cracked gas stream comprising hydrogen, nitrogen, unreacted ammonia, and water vapor; cooling the cracked gas stream to a separation temperature that is sufficient for condensing at least a portion of the unreacted ammonia and the water vapor to form a dual phase fluid; separating the dual phase fluid in a separator that is configured to produce an aqueous ammonia stream and a vapor stream, the vapor stream comprising predominantly of hydrogen and nitrogen; wherein the separation temperature is below 0°C.
Resumen de: EP4571906A1
The present invention relates to a hydrogen ion conductive multilayer composite membrane comprising one or more inner reinforced membrane comprising a porous PTFE layer impregnated with an ionomer composition and outer reinforced membranes positioned on both sides of the inner reinforced membrane, wherein the outer reinforced membranes comprise a porous PTFE layer impregnated with an ionomer composition.
Resumen de: EP4570960A1
Die Erfindung betrifft eine Elektrolysezelle (01) zur Elektrolyse von CO2 mit einer Kathodenseite (02) und einer Anodenseite (03). Dabei umfasst die Elektrolysezelle (01) eine Kathodenplatte (04), eine Gaskammer (06), eine Gasdiffusionsschicht (08), eine Katalysatorschicht (09), eine Wasserkammer (07) und eine Anodenplatte (05). Die Kontaktierung der Katalysatorschicht (09) wird durch die Verwendung mehrerer Strombrücken (10) optimiert. Hierzu sind diese (10) elektrisch leitend mit der Kathodenplatte (04) und der Katalysatorschicht (09) verbunden und durchdringen dabei die Gasdiffusionsschicht (08).
Resumen de: EP4570742A1
A method for producing hydrogen comprises a) performing water electrolysis to produce oxygen and a first hydrogen product stream; b) reforming a hydrocarbon stream with oxygen to produce a reformed stream containing CO<sub>x</sub> and hydrogen; c) optionally, subjecting said reformed stream to a water gas shift process to produce a shifted product stream containing additional hydrogen and carbon dioxide; and separating hydrogen from the shifted product stream to produce a second hydrogen product stream; and d) directing oxygen produced in step a), optionally after buffering, to step b). The method allows for producing constant, continuous and uninterrupted amounts of emission-free hydrogen accomodating external influences such as fluctuations with weather conditions, day-night cycles and seasons. Said process can be run continuously and is not reliant on only one energy source which might be fluctuating.
Resumen de: EP4570950A1
The present invention relates to an electrolyzer designed for the generation of hydrogen and oxygen through water electrolysis. The electrolyzer comprises a housing structure accommodating at least one electrolytic cell, which includes an anode, a cathode, and an ion-conducting membrane. A water inlet is provided to introduce water into the electrolytic cell, and an electrical power source is operatively connected to the anode and cathode to facilitate the electrolysis process. The electrolyzer also includes separate outlets for the efficient extraction of hydrogen and oxygen generated during electrolysis. A multi-parameter optical measurement system is integrated within the electrolyzer. This system features at least one optical fiber with multiple sensing points distributed along its length, each capable of detecting various operational parameters within the electrolyzer.
Resumen de: GB2636333A
A system comprising two electrolysis subsystems for electrolysis of water to produce hydrogen, wherein the first subsystem produces waste thermal energy and the second uses this energy. One of the subsystems may use a low-temperature electrolysis technology and the other a high-temperature technology. Said low-temperature process may be anionic exchange membrane (AEM) electrolysis, alkaline electrolysis or a combination. The high-temperature process may be solid oxide electrolysis cell (SOEC) electrolysis. The waste thermal energy may be recovered into a heat exchange fluid and the system may also comprise a heater or a steam generator. Also claimed is a method for the system.
Resumen de: EP4570949A1
A hydrogen gas generation system comprises a reactor chamber, an elongate cathode, an ammonia inlet, a hydrogen gas outlet, and a collection outlet. The reactor chamber has an input end and an output end. A wall of the reactor chamber between the input end and the output end is an anode. The elongate cathode extends between the input end and the output end through an interior of the reactor chamber. The ammonia inlet is positioned to introduce a liquid ammonia into the reactor chamber such that the liquid ammonia flows in a direction from the input end to the output end. The hydrogen gas outlet at the output end, wherein a hydrogen gas generated in the reactor chamber exits the reactor chamber through the hydrogen gas outlet. The collection outlet is at the output end. Nitrogenous compounds exit the reactor chamber through the collection outlet.
Resumen de: WO2024184065A1
An offshore hydrogen production platform (100) is described comprising a support structure (101) and plurality of vertically spaced decks (110, 111, 112) arranged to be supported by the support structure (101). The plurality of vertically spaced decks (110,111, 112) comprise an uppermost deck (110), and wherein the uppermost deck (110) comprises a hydrogen production equipment (130). The offshore hydrogen production platform (100) further comprises an enclosure (113) arranged to encapsulate the hydrogen production equipment (130). Also described is a method of producing hydrogen using hydrogen production equipment (130) located on a uppermost deck (110) of an offshore hydrogen platform (100).
Resumen de: CN119677896A
In one embodiment, discussed herein is a method of producing hydrogen, the method comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a membrane between the anode and the cathode, where the membrane is both electronically and ionically conductive; (b) introducing a first stream to the anode, wherein the first stream comprises ammonia; (c) introducing an oxidizing agent to the anode; and (d) introducing a second stream to the cathode, wherein the second stream comprises water and provides a reducing environment to the cathode; wherein the hydrogen is generated from water in an electrochemical manner; wherein the first stream and the second stream are separated by the membrane; and wherein the oxidant and the second stream are separated by the membrane.
Resumen de: EP4570958A2
A method of operating an electrolyzer module includes providing a first air stream and steam into a stack of electrolyzer cells located in a hotbox and outputting a product stream containing hydrogen and steam, and an oxygen exhaust stream, providing the product stream to an internal product cooler (IPC) heat exchanger located in the hotbox to reduce the temperature of the product stream by transferring heat to the first air stream, and providing the product stream from the IPC to an external product cooler (EPC) heat exchanger located outside of the hotbox and inside of a cabinet housing the hotbox to further reduce the temperature of the product stream by transferring heat to a fluid stream.
Resumen de: EP4570957A2
A method operating an electrolyzer system includes producing hydrogen by electrolysis of steam in at least one electrolyzer cell stack of the electrolyzer system using power received from an intermittent power source, detecting a reduction in a level of power received from the intermittent power source below a first threshold, decreasing a rate of producing hydrogen in response to the detected reduction in the level power below the first threshold, detecting a reduction in a level of power received from the intermittent power source below a second first threshold that is lower than the first threshold, and switching the electrolyzer system into a hot standby mode in which the electrolyzer system does not produce hydrogen and maintains the least one electrolyzer cell stack above a predetermined threshold temperature.
Resumen de: DK202330334A1
In an alkaline electrolyzer (12), especially for production of hydrogen gas, the separator (11) has larger pores in layers (8, 9) on its outer sides (7 A, 7C), facing the electrodes (13, 14), than in the bulk layer (10). In a practical embodiment, the separator (11) is composed of two diaphragms (7, 7 '), each with asymmetric pore structure, where the diaphragms (7, 7') are oriented such that largest pores are on the outer sides of the separator (11 ).
Resumen de: US2025188630A1
An oxynitride catalyst includes NiaMbNcOd, wherein M is Nb, Mn, or Co, a>0, b>0, c>0, d>0, and a+b+c+d=1. A hydrogen evolution device includes an anode and a cathode dipped in an electrolyte, and the anode includes the oxynitride catalyst. The oxynitride catalyst can be disposed on a support. The oxynitride catalyst may have a polyhedral structure.
Resumen de: KR20250089313A
본 발명의 예시적인 실시예들에 따르면, 암모니아 분해용 촉매가 제공된다. 상기 암모니아 분해용 촉매는 세라믹 담지체; 및 상기 세라믹 담지체 상에 담지된 복합체로서, 상기 세라믹 담지체 상에 위치한 제1 산화물과, 상기 제1 산화물의 표면에 용출된 활성 금속 입자를 포함하는 복합체를 포함한다. 또한, 본 발명의 다른 예시적인 실시예들에 따르면, 암모니아 분해용 촉매를 제조하는 방법이 제공된다.
Resumen de: AU2023376448A1
Provided is a positive electrode for electrolysis, which is unlikely to deteriorate in electrolysis performance even in cases where a power with large output fluctuation such as renewable energy is used as a power source, and in which excellent catalytic activity is maintained for a long period of time. A positive electrode 10 for electrolysis comprises: a conductive substrate 2 at least a surface of which is made of nickel or a nickel-based alloy; and a first layer 4 which is formed on the surface of the conductive substrate 2 and can function as a catalyst layer composed of a lithium-containing nickel cobalt oxide represented by a composition formula of Li
Resumen de: JP2025090210A
【課題】より省電力で、水素を製造できる水素製造装置を提供すること。【解決手段】水素製造装置1は、アンモニアを貯留するアンモニアタンク2と、アンモニアタンク2から供給されるアンモニアを、窒素および水素に分解するプラズマリアクタ3と、プラズマリアクタ3から供給される、未分解のアンモニア、窒素および水素の混合物から、未分解のアンモニアおよび窒素と水素とを分離する第1分離膜5と、第1分離膜5により分離された未分解のアンモニアおよび窒素の混合物から、未分解のアンモニアおよび窒素を分離する第2分離膜6と、第2分離膜6により分離された未分解のアンモニアを、プラズマリアクタ3に供給するためのアンモニア戻りライン14とを備える。【選択図】図1
Nº publicación: KR20250088530A 17/06/2025
Solicitante:
스티에스달하이드로겐에이에스
Resumen de: CN119907871A
An electrolytic cell (1) for producing hydrogen, comprising a stack of bipolar electrodes (9) that sandwich an ion transport membrane (2) between every two of the bipolar electrodes. Each bipolar electrode comprises two metal plates (9A, 9B) welded together back to back, forming a coolant compartment between them and having a respective anode surface and an opposite cathode surface, each metal plate abutting one of the membranes. The plates (9A, 9B) are embossed with primary vertical channels (10A, 10B) and secondary channels (11A, 11B) in a herringbone pattern for conveying oxygen and hydrogen. Embossed herringbone patterns are provided on both sides of the metal plates (9A, 9B) so as to also provide herringbone-pattern coolant channels (11B) within the coolant compartments.