Resumen de: US2025263846A1
To provide a water electrolysis stack capable of suppressing deterioration in sealability. A water electrolysis stack configured by laminating a plurality of water electrolysis cells to generate hydrogen by supplying water to the water electrolysis cell and applying electric power, wherein a laminated member for improving sealing property, which is a member that does not introduce water therein, is laminated at a predetermined position of the water electrolysis cell to be laminated.
Resumen de: US2025266534A1
A water electrolysis system includes: a water electrolysis device including a membrane electrode assembly formed by sandwiching an electrolyte membrane between an anode and a cathode, the water electrolysis device being configured to generate oxygen gas at the anode by supplying water to the cathode and electrolyzing the water; and a water supply device configured to supply, to the anode, water generated in association with power generation of a fuel cell stack.
Resumen de: CN120560033A
本发明公开了一种基于改进灰狼优化算法的PEM电解水制氢多变量模型预测控制方法及制氢系统,属于氢能制备控制领域。针对PEM制氢系统多变量耦合引起的控制超调与权重矩阵随机性问题,提出IGWO‑MPC双环控制架构:构建涵盖电流密度、温度、压力的全局模型,解析电解槽电压、温度及功率;采用加权最小二乘法对非线性效率进行抗差线性化,建立状态空间模型;通过改进灰狼算法动态优化MPC权重矩阵,结合收敛因子自适应调整策略,抑制多物理场耦合失稳。该方法突破传统经验赋权局限,使温度波动降低56.8%,产氢量提升4.89%,电解效率稳定于78%‑80%,有效提升大规模清洁能源制氢系统的控制精度与运行效率。
Resumen de: CN120556085A
本申请属于高熵电催化剂技术领域,具体涉及NF负载的高熵氧化物/MXene双功能电催化剂、制备方法及应用。本申请采用一步酒精燃烧法,将高熵氧化物和MXene负载在泡沫镍上,将得到的预产物Ⅱ在通风橱中使用明火点燃,反应燃烧完成后获得NF负载的高熵氧化物/MXene双功能催化剂。本申请的制备方法简单便捷,实用性强,易于合成,对环境友好,并且原料来源广、成本低。所制备的NF负载的(FeCoNiZnCe)Ox@MXene催化剂具有优异的HER、OER和UOR性能,可应用于电解水制氢领域,还可以进一步用于电催化尿素氧化领域,进一步扩大其应用范围。
Resumen de: CN120550804A
本发明提供了一种高效催化氨分解制氢的Ru/MgO‑La2O3催化剂及其制备方法和应用,属于氨分解制氢技术领域。该催化剂以贵金属Ru为活性组分,以MgO‑La2O3复合氧化物为载体,通过共沉淀法和浸渍法制备而成。所述催化剂中Ru的负载量为1‑20wt%,通过优化载体与金属‑载体相互作用,显著提升了Ru的分散性和氨分解反应活性。制备方法包括:将钌前驱体与MgO‑La2O3载体混合,经干燥、煅烧及还原处理,得到高分散的Ru/MgO‑La2O3催化剂。与现有贵金属基催化剂相比,本发明通过复合载体调控Ru的电子结构,使其在低温(350‑550 oC)下展现出优异的氨分解活性与稳定性,在450 oC时氨转化率可达99.5%,且在高温和高空速条件下仍保持高效全转化。该方法获得Ru/MgO‑La2O3催化剂在同等条件下优于大部分报道的催化剂,并且催化剂制备工艺简单、成本可控,适用于规模化生产,为氢能储运领域提供了高效经济的技术方案。
Resumen de: CN120550827A
本发明提供了Pr2TeO2在光催化制氢中的应用,属于光催化材料技术领域。本发明将Pr2TeO2作为光催化分解水制氢的催化剂,Pr2TeO2具有高度有序的晶体结构和较少的结构缺陷,晶体的有序性能减少电子在晶格中的散射,从而增强载流子的迁移率;同时Pr2TeO2拥有相对较窄的带隙,能够有效地吸收可见光,从而提高光催化效率,在光催化分解水制氢方面具有较大的优势。实施例的结果显示,本发明将Pr2TeO2作为光催化分解水制氢的催化剂,在模拟太阳光的照射下,Pr2TeO2连续五个小时的平均产氢速率可达52.14μmol·g‑1·h‑1,是TiO2产氢速率(5.04μmol·g‑1·h‑1)的十倍以上。
Resumen de: CN120556091A
本发明涉及电制氢技术领域,具体涉及一种海上风电的电解海水制氢装置及系统,该系统包括处理器和存储器,处理器用于处理存储在存储器中的指令实现以下步骤:对风电功率数据进行分类;确定功率强度权重和当前电量权重,并对并网功率进行调整;根据当前时刻下的风电功率数据和并网功率修正值,以及海上风电的电解海水制氢设备的电制氢装置的最大运行功率和最小运行功率,对海上风电的电解海水制氢设备的蓄电池进行充放电调整。本发明通过量化的功率强度权重和当前电量权重,自适应地设置了并网功率修正值,从而提高了并网功率调整的合理性,并通过增加的蓄电池的充放电调整,实现了电资源的循环利用,在一定程度上减少了弃风能源的浪费。
Resumen de: CN120556059A
本发明公开了一种节能型海水制氢装置,包括:电解槽、氧分离器和氢分离器;电解槽内设置有阳极组件和阴极组件,阳极组件包括阳极片和第一集气筒,阴极组件包括阴极片和第二集气筒;并且阴极片的表面负载有活性组分,所述活性组分包括镍、钼中的一种或多种;第一集气筒和所述第二集气筒的侧壁内部设置有叶片,叶片第一集气筒和所述第二集气筒旋转,使所述第一集气筒和第二集气筒内的电解液形成旋转上升的涡流,并将所述第一集气筒和第二集气筒外部的电解液均匀的从开口吸入。本发明可以提高制氢效率,实现功能减排,同时还可有效分离制的氧气和氢气。
Resumen de: CN120550583A
本发明涉及气液分离技术领域,具体是一种电解水制氢系统的气液分离装置,包括柜体相对两侧均固定连接有连接管,且两个连接管分别靠近柜体顶底两端,两个所述连接管之间设置有多个弯管,且多个弯管分别固定连接于柜体两相对内侧壁处,所述柜体相对两侧的多个弯管交错布置,冷却机组与所述柜体顶部固定连接,多个分离机构均位于所述柜体内部。本发明中,通过将气体利用连接管输送,使气体通过多个分离机构,使气体在经过分离机构时被分离机构冷却,使气体降温其中水汽凝结成液滴,而后利用收集机构对分离机构中冷凝出的液滴进行清理,从而便于分离气体中的水分。
Resumen de: CN120556056A
本发明涉及制氢技术领域,特别涉及一种水电解制氢电解槽,包括有端板、连杆一、连杆二、氧气管、氢气管和注水管等;两个端板之间固接有若干个连杆一;还包括有、注水管和电解单元;两个端板之间固接有若干个连杆二;两个端板上共同贯穿有氧气管、氢气管和注水管;氧气管上等距开有若干个通孔一;氢气管上等距开有若干个通孔二;注水管上等距开有若干个通孔三。本发明可在不拆解隔膜的情况下,完成对隔膜的清理,无需对各个组件进行拆解和重组,大幅减少人工成本;本发明将隔膜集成在隔板内,在发现隔膜损坏时,可将损坏的隔膜从隔板内取出,进行更换,无需将所有部件拆卸下来,提高更换效率。
Resumen de: CN120550829A
本发明公开了一种溶剂热法合成ZnSe/NiCo2O4光催化剂的方法,属于光催化析氢技术领域。本发明以NiCo2O4作为助催化剂合成ZnSe/NiCo2O4光催化剂,NiCo2O4作为一种半导体能够与ZnSe形成有效的二元异质结,使得光生载流子的分离效率显著提高,并且NiCo2O4具有多价态的共存镍和钴离子,可以提供更丰富的活性位点和优异的电化学性能,进而提升了ZnSe的光催化性能,相比于纯ZnSe,ZnSe/NiCo2O4光催化剂的析氢过电位明显降低,载流子分离效率提高,活性位点增加,光催化析氢活性显著提升。
Resumen de: CN120553668A
本发明公开了一种非晶镍钴铁磷酸盐阳极催化剂的制备方法及应用,属于碱性电解水制氢技术领域,包括以下步骤:(1)将过渡金属盐溶于溶剂中,搅拌,得到金属盐溶液;(2)将磷酸盐溶于溶剂中,搅拌,得到磷酸盐溶液;(3)将磷酸盐溶液加入金属盐溶液进行反应,用去离子水和乙醇洗涤,离心分离,干燥,得到非晶镍钴铁磷酸盐阳极催化剂;该非晶镍钴铁磷酸盐阳极催化剂的制备方法及应用,通过全水相绿色合成体系实现了工艺安全性提升和环境友好性优化,所得催化剂在AEM电解槽中展现优异性能,在2A/cm²电流密度下槽电压仅需1.87V,具有显著的工业化应用前景。
Resumen de: CN120553640A
本发明提出了一种基于多相反应耦合渣金电解高温高纯氢气制取系统及方法,其核心技术在于利用1600‑1800℃高温铁基熔体作为反应介质,将水蒸气通过底吹元件通入熔体发生热化学强制分解反应(Fe+H2O→FeO+H2↑)并可通过控制熔体氧活度制取高纯度氢气,同时通过氧活度检测装置可以实时调控反应条件;脱氧产物FeO则通过外加电场进行电化学还原(FeO→Fe+1/2O2)实现铁基介质的再生,形成可持续的氧转移循环。该系统创新性地采用光伏、风电等绿色电力作为能量来源,既满足了水分解吸热和熔渣电解的能耗需求,又实现了全过程零碳排放,有效打通了钢铁冶金与清洁能源生产的物质‑能量耦合通道,为钢铁行业低碳转型和绿氢规模化制备提供了具有工业可行性的技术方案。
Resumen de: CN120556083A
本发明属于电催化材料技术领域,具体公开了原位碳包覆硫化钴/硫化钴锌复合材料及制备方法和应用,制备方法包括如下步骤:将钴硝酸盐水合物和锌硝酸盐水合物和六亚甲基四胺溶解于脱碳水制备前驱体;前驱体进行硫化退火得到中间体产物;中间体用盐酸超声制得复合材料。本发明采用上述的原位碳包覆硫化钴/硫化钴锌复合材料及制备方法和应用,通过水热、煅烧、刻蚀,成功制备出具有多孔结构的原位碳包覆的硫化钴/硫化钴锌复合材料,改善了比表面积,提高了催化性能,由于碳包覆硫化钴/硫化钴锌复合材料在碱性电解质中避免被腐蚀,从而实现良好的耐久性和导电性。
Resumen de: CN120566564A
基于光伏发电的制氢控制方法、系统、设备及存储介质,涉及光伏制氢领域。方法包括:基于光伏发电系统的发电特性数据,将光伏发电系统的运行区域划分为稳定运行区域和波动运行区域;基于稳定运行区域的第一输出功率确定水电解制氢系统的基础运行参数,以及基于波动运行区域的第二输出功率确定动态调节参数;基于水电解制氢系统的运行数据计算能量转换效率,当能量转换效率低于目标效率时,确定影响能量转换效率的关键参数;根据关键参数生成目标调控策略,并控制水电解制氢系统按照目标调控策略进行运行。实施本申请提供的技术方案,使得水电解制氢系统在光伏发电波动工况下仍能保持稳定的运行状态,有效提高了系统的能量转换效率。
Resumen de: CN120556072A
本发明属于电解水制氢技术领域,具体涉及一种碳氧共掺杂管状多孔氮化硼载体负载单原子催化剂的制备方法及应用。本发明通过控制前驱体的沉淀速率形成了碳氧共掺杂管状多孔氮化硼,碳氧共掺杂管状多孔氮化硼具有纳米管状结构,Ru以单原子的形式分散在晶格中。这保证了结构的稳定性和表面活性位点的充分暴露。更重要的是,单原子与载体的相互作用可以通过电荷转移有效调节催化相材料电子状态,从而提高反应动力学。本发明解决了单原子催化剂在酸性条件下催化活性及稳定性较差,以及目前工业化电解水装置中使用贵金属基催化剂导致成本高昂的问题。
Resumen de: CN120556062A
本发明提供一种SOEC电解制氢耦合高温热储能系统,通过设置热储能子系统,能够储存并在需要时释放高温热能,且在第一换热器中,热能通过储热颗粒与水进行高效热交换,从而大幅减少原本需要用于电加热的电能消耗,有效解决SOEC电解制氢能耗居高不下的问题,从而减轻因电加热导致的系统复杂性问题。同时,第二换热器回收电解过程中氢气和氧气的冷却热能,并将其转化为水蒸气循环使用,有效解决了SOEC电解制氢热能利用不充分的问题,使得系统整体的热能转换效率得到显著提升。
Resumen de: CN120556058A
本发明涉及制氢设备的技术领域,特别是涉及一种制氢设备的极板固定装置,其能够方便对多个极板进行检查并能够快捷的拆下指定的极板,操作更架简单方便;包括多个极板;还包括两个下横板、两个上横板、门型框架、多个插销孔、多个插杆、两个横杆和多个锁定螺栓,两个上横板位于两个下横板的上方,门型框架的下端通过一个横杆与两个下横板的左端插装连接,门型框架的上端通过另一个横杆与两个上横板的左端插装连接,多个锁定螺栓穿过门型框架与两个下横板和两个上横板螺接,多个极板的左右侧壁的上端和下端均设置插销孔,多个插杆分别穿过两个下横板和两个上横板的插孔插装在多个插销孔中,将多个极板平行安装在两个下横板和两个上横板之间。
Resumen de: US2025270722A1
Methods are for storing electricity and producing liquefied natural gas (LNG) or synthetic natural (SNG) and using carbon dioxide and for producing electricity, natural gas (NG) or SNG. The methods involve, starting from a water flow, producing an oxygen gas flow and a hydrogen gas flow by electrolysis in an electrolytic cell. A first hydrogen gas flow portion and a second hydrogen gas flow portion are obtained. The first hydrogen gas flow portion is allocated to a methanation step in the presence of carbon dioxide gas. A condensed recirculation water vapor flow is obtained to be allocated to the methanation step and performing methanation. The second hydrogen gas flow portion is allocated to a cooling and liquefaction step. A liquid hydrogen flow is obtained, which is stored in a liquid hydrogen tank.
Resumen de: CN120390829A
The present invention provides a small high-voltage electrolyzer for generating hydrogen and oxygen, the small high-voltage electrolyzer comprising: one or more cells each comprising a plurality of high-voltage electrolysis cells wherein the electrolysis cells of the respective cells are electrically connected in series; and a central electrolyte header functionally connected to each of the electrolytic cells for supplying a liquid electrolyte to the cell; a central hydrogen header connected to each of the electrolytic cells for discharging the generated hydrogen from the cells; a central oxygen header connected to each of the electrolytic cells for discharging the generated oxygen from the cells; the direct-current power supply is used for supplying power to each unit of the electrolytic bath which is connected in series; wherein the cells of the electrolytic cells connected in series are electrically connected in parallel.
Resumen de: KR20250128408A
본 발명은 가교 공중합체, 이를 포함하는 고분자막 및 상기 가교 공중합체의 제조방법에 관한 것으로, 본 발명에 따른 가교 공중합체는 우수한 알칼리 안정성을 나타낼 수 있다.
Resumen de: WO2025175519A1
Provided in the present application are a two-dimensional 1T-phase molybdenum disulfide nano material, a preparation method therefor, and the use thereof. The two-dimensional 1T-phase molybdenum disulfide nano material satisfies the following conditions: the monolayer ratio of the molybdenum disulfide is 97% or above, the content of the 1T-phase molybdenum disulfide represented by X-ray photoelectron spectroscopy is 90% or above, and the surface has defects. The monolayer ratio of the two-dimensional molybdenum disulfide nano material being 97% or above indicates that the proportion of monolayer molybdenum disulfide nanosheets in the nano material is very high; the mass content of the 1T-phase molybdenum disulfide being 90% or above indicates that the nano material has good metallicity; and meanwhile, the presence of defects on the surface of the nano material indicates that the nano material has good dispersibility in solvents and also has good electrocatalytic performance, especially having excellent electrocatalytic hydrogen evolution performance under an industrial current density; the catalytic performance of the nano material is better than that of commercial Pt/C and even can be kept stable for 100 h without deterioration; thus, the nano material is one of the most superior non-precious-metal hydrogen evolution catalysts at present.
Resumen de: WO2025175829A1
Disclosed in the present invention is a system for preparing a hydrogen and oxygen mixed combustible gas from water, comprising a water tank, a first storage tank, a second storage tank and an electrochemical reactor. The water tank is connected to a feeding port of the electrochemical reactor via a water pipe. The electrochemical reactor is provided with a first gas outlet and a second gas outlet, the first gas outlet being connected to the first storage tank via a pipe, and the second gas outlet being connected to the second storage tank via a pipe. The first storage tank and the second storage tank are separately connected to a main discharge pipe via pipes, and a discharge port of the main discharge pipe is connected to a fuel gas storage tank. The electrochemical reactor is connected to a control apparatus. The present invention has the beneficial effects of effectively reduced production cost, capability of having the properties of combustibility, high calorific value, combustibility in an oxygen-deficient state and the like, and no pollution after combustion such that the hydrogen and oxygen mixed combustible gas is a novel efficient and environment-friendly clean energy.
Resumen de: WO2025177951A1
Problem The present invention provides a diaphragm for alkaline water electrolysis in which an inorganic compound for imparting hydrophilicity is not likely to fall off from an organic polymer porous membrane. Solution In this diaphragm for alkaline water electrolysis, a thin film that is derived from a titanium alkoxide and/or a zirconium alkoxide is adhered to an organic polymer porous membrane. The organic polymer porous membrane is a polysulfone-based porous membrane or a polyphenylsulfone-based porous membrane, and is supported by a wet nonwoven fabric that has polyphenylene sulfide fibers as constituent fibers. The organic polymer porous membrane supported by the wet nonwoven fabric is immersed in a diluent that is obtained by dissolving a solute, which is composed of a titanium alkoxide and/or a zirconium alkoxide, in a solvent and has a concentration of 0.1-20 vol%. Thereafter, in a situation where the solute is not precipitated, a heat treatment is performed so as to obtain a diaphragm for alkaline water electrolysis, in which a thin film that is derived from a titanium alkoxide and/or a zirconium alkoxide is adhered to the organic polymer porous membrane.
Nº publicación: WO2025178748A1 28/08/2025
Solicitante:
CSH2 CORP [US]
CSH2 CORP
Resumen de: WO2025178748A1
A system and a method are disclosed. The system includes a plurality of reversible energy conversion devices, a cryotank configured to store a liquefied fuel comprising hydrogen therein, a liquefier, and a fueling station for hydrogen-based vehicles. The cryotank, the liquefier, the plurality of reversible energy conversion devices, and the fueling station are fluidly connected. Each reversible energy conversion devices is individually controlled and is configured to reversibly convert hydrogen gas into electricity and convert electricity to hydrogen gas. The system also includes at least one interconnect configured to be connected with to a power grid, a data center, or an energy storage.