Resumen de: CN120390829A
The present invention provides a small high-voltage electrolyzer for generating hydrogen and oxygen, the small high-voltage electrolyzer comprising: one or more cells each comprising a plurality of high-voltage electrolysis cells wherein the electrolysis cells of the respective cells are electrically connected in series; and a central electrolyte header functionally connected to each of the electrolytic cells for supplying a liquid electrolyte to the cell; a central hydrogen header connected to each of the electrolytic cells for discharging the generated hydrogen from the cells; a central oxygen header connected to each of the electrolytic cells for discharging the generated oxygen from the cells; the direct-current power supply is used for supplying power to each unit of the electrolytic bath which is connected in series; wherein the cells of the electrolytic cells connected in series are electrically connected in parallel.
Resumen de: AU2024224275A1
A process for the reaction of aluminium with water comprising the steps of adding aluminium metal to an aqueous solution comprising potassium hydroxide at a concentration of between 0.1M and 0.4M and a surfactant; agitating the mixture of previous step; and collecting generated hydrogen. A composition for use in such a process for reacting aluminium with water, comprising potassium hydroxide and a surfactant.
Resumen de: CN120119273A
The invention relates to the field of hydrogen production through water electrolysis, and discloses an electrolytic bath air chamber for water electrolysis and an alkaline electrolytic bath, the electrolytic bath air chamber comprises a supporting net, an anode, an anode side separation net, a diaphragm, a cathode side separation net, a cathode and a supporting net which are sequentially overlapped, the anode side separation net and the cathode side separation net are pore plates with holes, grids with holes or layers with air permeability, and the supporting net is arranged between the anode side separation net and the cathode side separation net. The electrode and the diaphragm are separated through the cathode side separation net and the anode side separation net, a gap for discharging gas on the electrode is generated, and meanwhile, the tightness of laminations in the electrolytic bath such as the electrode and the supporting net is ensured, so that the alkaline electrolytic bath for producing hydrogen by electrolyzing water has relatively low contact resistance and bubble resistance, and the quality of the obtained gas is ensured.
Resumen de: WO2025226032A1
The present invention relates to a water electrolysis cell comprising: a separation plate including a first separation plate and a second separation plate; a membrane electrode assembly disposed between the first separation plate and the second separation plate and including an anode, a separation membrane, and a cathode; a gas diffusion layer disposed between the cathode and the first separation plate; a porous diffusion layer disposed between the anode and the second separation plate; and a titanium mesh layer, wherein the separation plate includes titanium, and the titanium mesh layer is not included between the cathode and the first separation plate.
Resumen de: WO2024179759A1
The invention relates to an electrochemical cell and to a method for producing hydrogen and oxygen from water. By virtue of the electrochemical cell according to the invention, it is possible to carry out an electrochemical reaction at temperatures of 120 °C - 200 °C and pressures of up to 30 bar even under harsh chemical conditions (e.g. KOH mass fractions of up to 35% in the electrolyte) over long periods of time. By virtue of the method according to the invention it is possible to produce hydrogen and oxygen from water at temperatures of 120 °C - 200° C and pressures of up to 30 bar even under harsh chemical conditions (e.g. KOH mass fractions of up to 35% in the electrolyte).
Resumen de: US2025333854A1
A water electrolysis system that generates hydrogen and oxygen by electrolysis of water includes a water electrolysis cell including an anode, a cathode, and an electrolyte membrane sandwiched between the anode and the cathode, and a control device that controls electric power supplied to the water electrolysis cell, wherein the control device performs a potential changing process of changing a potential of the anode either or both of upon starting of the water electrolysis system and during continuous operation of the water electrolysis system, and the potential changing process includes a potential lowering process of lowering the potential of the anode to a predetermined potential.
Resumen de: JP2025165009A
【課題】 水電解システムにおいて、目標露点となっている水素を短時間で製造する技術を提供する。【解決手段】 水電解システムは、水の電気分解によって水素を生成する水電解装置と、水電解装置に接続され、水電解装置によって生成された水素と水とを含むガスが流れる流路と、流路に接続され、水電解装置から供給されるガスを収容する収容部と、収容部に供給されるガスを冷却する冷却部と、収容部の内部の温度を検出する温度検出部と、収容部の内部の圧力を変更する圧力変更部と、収容部の内部の露点が目標露点となるための収容部の内部の温度と圧力との関係を示す情報と、温度検出部によって検出された温度と、を用いて目標圧力を推定し、収容部の内部の圧力が目標圧力になるように、圧力変更部を制御する制御部と、を備える。【選択図】 図1
Resumen de: KR20250156282A
본 발명의 일 실시예에 따른 선박은, 해수를 수소로 분리하는 수소발생장치 및 상기 수소발생장치를 통해 제조된 수소를 저장하는 수집부를 포함하고, 상기 수소발생장치는, 광촉매를 통해 해수로부터 수소를 발생시키는 촉매부 및 해수의 수면에 배치되어 상기 촉매부를 지지하는 지지부를 포함할 수 있다.
Resumen de: KR20250156580A
본 발명은 수소 제조 장치에 관한 것으로서, 구체적으로는 암모니아에 마이크로파를 인가하여 수소와 질소로 분해하는 장치에 관한 것이다. 본 발명은 특히 고출력 마이크로파 발생부를 이용하여 암모니아의 열분해를 효율적으로 수행하고, 그 생성된 수소를 다양한 용례에 활용할 수 있게 하는 수소 제조 장치에 관한 것이다. 본 발명에 따른 수소 제조 장치는 구체적으로, 암모니아가 투입되면 비귀금속 촉매재를 이용하여 상기 암모니아를 수소와 질소로 분해하는 반응기, 상기 반응기 내 상기 암모니아에 마이크로파를 인가하는 적어도 하나의 마이크로파 발생부, 및 상기 마이크로파 발생부의 출력 레벨 및 주파수를 제어하여 상기 반응기 내 온도를 유지하는 제어 시스템을 포함한다.
Resumen de: MX2025012653A
Process for the preparation of methanol comprising the steps of (a) preparing a hydrogen feedstock by electrolysis (b) providing a carbon oxide feedstock in periods of operating the electrolysis in step (a) (c) mixing at least part of the hydrogen feed and carbon oxide source consisting of carbon monoxide and/or carbon dioxide feed to obtain a methanol synthesis gas; (d) adjusting the molar content of hydrogen, carbon monoxide and/or carbon dioxide from step (c) to a module M of (H2-CO2)/(CO2+CO) to between 1.9 and 2.2 (e) converting the methanol synthesis gas in one or more boiling water reactors to methanol; in periods without operating the electrolysis in step (a) (f) interrupting the converting of the methanol synthesis gas in the one or more boiling water reactors by heat exchange with boiling water, wherein in step (f) the one or more boiling water reactors are heated by one or more auxiliary heaters to maintain boiling of the water in the one or more boiling water reactors.
Resumen de: KR20250156482A
본 발명은 용해로에 알루미늄을 투입하고, 버너를 이용하여 상기 용해로를 가열하는 단계; 알루미늄 용융된 용탕의 표면에서 알루미늄 드로스를 수집하는 단계; 반응조에 수집된 알루미늄 드로스 및 폐알칼리 용액을 투입하여 수소 가스를 발생시키고, 발생된 수소 가스를 포집하는 단계; 및 상기 용탕으로 알루미늄 빌렛을 제조하는 단계; 를 포함하며, 상기 버너는 수소 버너를 포함하고, 상기 알루미늄 드로스 및 상기 폐알칼리 용액을 반응시켜 발생된 수소 가스는 상기 수소 버너의 연료로 공급되는 것을 특징으로 하는 알루미늄 빌렛 제조 방법에 관한 것이다.
Resumen de: US2025333862A1
A solid oxide electrolysis cell includes an oxygen electrode, a fuel electrode, and an electrolyte interposed between the oxygen electrode and the fuel electrode. The oxygen electrode comprises an oxygen electrode carrier comprising internal pores, and an oxygen electrode catalyst supported in the internal pores, and having a perovskite single-phase structure. The fuel electrode comprises a fuel electrode carrier and a fuel electrode catalyst supported on the fuel electrode carrier.
Resumen de: WO2025226115A1
The present invention relates to a super-hydrophilic titanium oxide nanotube electrode electrodeposited with metal nanoparticles and, more specifically, to a method for manufacturing a super-hydrophilic titanium oxide nanotube-based electrode electrodeposited with metal nanoparticles through simple electrooxidation and electrodeposition.
Resumen de: FR3161689A1
L’invention concerne un procédé de production d’hydrogène par électrolyse de vapeur d’eau, comprenant les étapes suivantes : production de vapeur d’eau (112) par chauffage d’eau liquide (204), etélectrolyse, dans une unité d’électrolyse (102), d’au moins une partie de ladite vapeur d’eau (112), pour fournir un premier flux de sortie (116) riche en hydrogène et d’un deuxième flux de sortie (118) riche en oxygène ; caractérisé en ce que la production de la vapeur d’eau est réalisée par au moins un circuit de pompe à chaleur réutilisant une partie de la chaleur d’au moins un desdits flux de sortie (116,118) pour vaporiser l’eau liquide. Elle concerne également un système (400) mettant en œuvre un tel procédé. Voir Figure 4
Resumen de: CN120866882A
本发明公开了一种基于实时能耗的水电解制氢系统控制参数自整定方法,通过部署分钟级精度的电能表与氢气流量计,构建实时电耗闭环反馈系统,创新采用两级协同整定机制:第一级解耦温度与电流的强耦合关系,通过网格寻优+精细寻优确定最低ΔE组合;第二级优化碱液流量与分离器液位。本发明突破了多参数人工调优瓶颈,实现短时间内完成能效最优整定,单位电耗降幅达5.8‑8.2%,且集成SIL2级安全保护。
Resumen de: WO2024208614A1
- 27 - Method for use in controlling operation of a hydrogen production plant ABSTRACT The invention provides computer-implemented method for use in controlling operation of a hydrogen production plant, the method comprising determining a maximum available amount of energy of a predetermined energy category in a current time interval; determining a target minimum amount of the energy of the predetermined energy category to be used for hydrogen production in the current time interval; and determining hydrogen setpoints for the current time interval using the maximum available amount and the target minimum amount as constraints. Fig. 1b
Resumen de: AU2024286612A1
Disclosed are a system and method for the generation of hydrogen from a source of liquid comprising water. The system comprises a high fluid velocity electrolyzer comprising an inlet and an outlet, the inlet of the high fluid velocity electrolyzer fluidly connected to the source of liquid, and a gas fractionation system fluidly connected to the outlet of the high fluid velocity electrolyzer.
Resumen de: FR3161690A1
Couplage d’une installation d’hydrogénation ou d’oxydation (2) et d’une installation de production de dihydrogène (3) pour transférer (4) de la chaleur produite par l’installation d’hydrogénation ou d’oxydation (2) à un flux d’entrée d’un dispositif électrochimique de l’installation de production de dihydrogène (3) et/ou pour acheminer (100) vers l’installation d’hydrogénation ou d’oxydation (2) un ou plusieurs fluides formés par le dispositif électrochimique. Figure pour l’abrégé : Fig. 6
Resumen de: AU2024237817A1
The present invention relates to an electrolyser system (10) comprising at least one electrolyser (20), the electrolyser (20) comprising at least one steam inlet (41) and at least one off-gas outlet (38; 39), and a turbocharger (62) for compressing off-gas from the electrolyser (20). The turbocharger (62) comprises a drive fluid inlet, a drive fluid outlet, a compression fluid inlet, a compressed fluid outlet, a compressor (13) and a turbine (12). The turbine (12) is configured to drive the compressor (13). The drive fluid outlet of the turbocharger (62) is fluidically connected to the at least one steam inlet (41) of the electrolyser (20). The at least one off-gas outlet (38; 39) of the electrolyser (20) is fluidically connected to the compression fluid inlet of the turbocharger (62). The system (10) can further can comprise a steam source fluidically connected to the drive fluid inlet of the turbocharger (62) for powering the turbine (12) using pressurised steam.
Resumen de: AU2024239221A1
This hydrogen production system is provided with: a solid oxide electrolytic cell (SOEC) that electrolyzes water vapor; a power supply device that applies a voltage equal to or greater than a thermal neutral voltage to the SOEC; and a water vapor generation device that generates at least a portion of water vapor to be supplied to the SOEC by heating water using surplus heat generation of the SOEC.
Resumen de: CA3271574A1
The invention relates to the coating of anion exchange membranes (AEM) with catalytically active substances. The CCM thus obtained are used in electrochemical cells, especially for alkaline water electrolysis. It was an object of the invention to specify a process for producing a CCM by direct 5 coating which maintains the necessary planarity of the AEM and ideally avoids the use of lost films and eschews CMR substances. Swelling shall also be minimized. The process shall also be performable with fluorine-free ionomers. The invention is based on the finding that the addition of certain organic substances has the result that the AEM swells only to a small extent, if at all (antiswelling agent). It has surprisingly been found that substances suitable as antiswelling agents 10 are identifiable by their solubility behaviour, more particularly by their Hansen parameters. Fig. 4 accompanies the abstract
Resumen de: KR20230147339A
The present invention provides a device for producing hydrogen using a thermochemical redox cycle. A device for producing hydrogen according to one embodiment of the present invention comprises: a first reactor having one end selectively connected to a heat supply source through a valve and the other end selectively connected to an external cooling device and a heat source-using device through a valve; a second reactor having one end selectively connected to the heat supply source through a valve and the other end selectively connected to the external cooling device and the heat source-using device through a valve; and a control unit performing a control operation by adjusting the state of the valve so that hydrogen or oxygen may be produced in the first reactor and the second reactor. Hydrogen or oxygen can be produced in a plurality of reactors by adjusting the state of a valve.
Resumen de: JP2024140857A
To provide a hydrogen production system and an operation method of the hydrogen production system capable of suppressing the production cost of hydrogen generated by electrolysis of steam in a solid oxide electrolytic cell (SOEC) and expanding the range of the amount of steam which can be electrolyzed.SOLUTION: A hydrogen production system includes a solid oxide electrolytic cell (SOEC) for electrolysis of steam, a steam generator for heating feed water to generate steam, and a combustor for burning a part of hydrogen included in the steam discharged from the hydrogen electrode of the SOEC. The steam generator is configured such that at least a part of the supply water is heated by heat exchange between at least a part of the supply water and a gas containing combustion gas generated in the combustor to generate at least a part of the steam.SELECTED DRAWING: Figure 1
Resumen de: US2025333853A1
A hydrogen production system and a hydrogen production method includes: a heat exchanger that heats steam by using a heating medium heated by thermal energy at 600° C. or higher; a high-temperature steam electrolysis device that electrolyzes steam at 600° C. or higher to produce hydrogen by applying, to a high-temperature steam electrolysis cell, a voltage lower than an electric potential at a thermal neutral point at which Joule heating caused by application of a current and heat absorption caused by electrolysis reaction are balanced; and a heating device that heats the high-temperature steam electrolysis device by the steam.
Nº publicación: WO2025223593A1 30/10/2025
Solicitante:
BREITMAYER JUERGEN [DE]
BREITMAYER, J\u00FCrgen
Resumen de: WO2025223593A1
The object of the invention is to use an electric generator system with an internal combustion engine in combination with a reactor system based on an alkaline electrolysis system for producing a fuel gas with a high oxygen content from a carrier gas, e.g. natural gas, and/or the exhaust gases of internal combustion engines and using the hydrogen and oxygen produced during the electrolysis process, and to provide a method for producing a fuel gas or synthesis gas with a high oxygen content by means of the reactor, wherein the energy input for producing the fuel gas is reduced and the water input is minimized compared to already known methods and systems. The system and the method for producing a fuel gas (25) from a carrier gas (11), e.g. natural gas (11), exhaust gases from internal combustion engines, hydrogen and oxygen, use an alkaline low-voltage electrolysis system (3), which consists of a plurality of individual cells (4) within a reactor housing (2) and allows the fuel gas (25) to be produced directly in the individual cell (4) during electrolysis. Despite its high oxygen content, the fuel gas (25) is combustible but not explosive.