Resumen de: CN119630834A
The invention relates to a method for heating a furnace comprising radiant tubes and capable of heat-treating a running steel product, comprising the following steps: i. Supplying H2 and O2 to at least one of said radiant tubes such that said H2 and said O2 combine into heat and steam; ii. Recovering said steam from said at least one of said radiant tubes; iii. Electrolyzing the steam to produce H2 and O2; iv. Supplying said H2 and O2 produced in step iii to at least one of said radiant tubes such that said H2 and O2 combine into heat and steam.
Resumen de: EP4567079A1
Molybdenum carbide includes a Mo<sub>2</sub>C crystal structure, in which a content of carbon with respect to a total mass (100 mass%) of the molybdenum carbide is 6% or more.
Resumen de: US2025149602A1
A SOC stack system comprises one or more solid oxide cell stacks and multi-stream solid oxide cell stack heat exchanger(s).
Resumen de: EP4567158A1
Provided is a hydrogen production system (100) including: an electrolysis module (19) that supplies steam to a hydrogen electrode (11) including a metal component and produces hydrogen through steam electrolysis; a hydrogen storage facility (40) that stores the generated hydrogen; a steam supply unit (20) that supplies steam to the hydrogen electrode (11); a regulation unit (50) that regulates a supply amount of the hydrogen supplied from the hydrogen storage facility (40) to the hydrogen electrode (11) and a supply amount of the steam supplied from the steam supply unit (20) to the hydrogen electrode (11); and a control device (80) for controlling the regulation unit (50) to switch a heating medium supply state in which a heating medium is supplied from a heating medium supply unit (70) to the hydrogen electrode (11) to a steam supply state in which steam is supplied from the steam supply unit (20) to the hydrogen electrode (11), in response to the electrolysis module (19) exceeding a first switching temperature when activating the electrolysis module (19).
Resumen de: AU2022322636A1
A highly crystalline mesoporous sulphur functionalized carbon nitride and a process for producing the same. The process including the steps of: providing a carbon nitride precursor material; mixing the carbon nitride precursor material with a metal salt to form a first mixture; and, thermally treating the first mixture to produce the crystalline carbon nitride.
Resumen de: CN119604469A
The present invention relates to a method for manufacturing an electrocatalyst for alkaline water electrolysis, said method comprising the steps of: (i) generating an aqueous electrolyte comprising suspended graphene and graphite nanoplatelets having lt in an electrochemical cell; the present invention relates to an electrolytic cell having a thickness of 100 nm, where the electrolytic cell comprises: a graphite negative electrode, (b) a graphite positive electrode, (c) an aqueous electrolyte comprising ions in a solvent, the ions comprising cations and anions, where the anions comprise sulfate anions; and wherein the method comprises the step of passing an electric current through the electrolysis cell to obtain exfoliated graphene and graphite nanosheet structures in the aqueous electrolyte in an amount greater than 5 g/l; (ii) forming an electroplating bath (2) comprising suspended graphene and graphite nanoplatelets in an amount greater than 2 g/l, said acidic electroplating bath comprising an aqueous solution of nickel sulfate and an electroplating solution comprising suspended graphene and graphite nanoplatelets in an amount greater than 5 g/l (thickness lt; 100 nm) of an aqueous electrolyte of step (i); and (iii) electrodepositing a combined layer of Ni or Ni alloy with graphene and graphite particles from the electroplating bath on a support to form an electrocatalyst.
Resumen de: CN119013421A
The hydrocarbon feed stream is exposed to heat in the absence of oxygen to convert the hydrocarbon feed stream into a solid stream and a gas stream. The gas stream is separated into an off-gas stream and a first hydrogen stream. The carbon is separated from the solids stream to produce a carbon stream. The water stream is electrolyzed to produce an oxygen stream and a second hydrogen stream. Iron ore is reduced to produce iron by flowing hydrogen through the iron ore. The iron and a first portion of the carbon in the carbon stream are combined to produce steel. At least a portion of the oxygen in the oxygen stream and a second portion of the carbon in the carbon stream are combined to produce electrical energy and a carbon dioxide stream.
Resumen de: WO2024058606A1
The present invention relates to a method for preparing a NiMo-MoO3-x porous nanorod catalyst on the basis of a metal-organic framework and a non-precious alloy catalyst prepared thereby. The method for preparing a non-precious alloy catalyst according to the present invention can produce an alloy catalyst retaining excellent HER performance close to that of a commercial platinum catalyst by forming porous nanorods with a wide surface area having a combination of an alloy and an oxide.
Resumen de: US2025187912A1
A catalyst includes a ruthenium metal loaded on a support, wherein the support has a chemical formula of AxB(1-x)Oy. A is an alkaline earth metal, B is aluminum, zinc, cerium, manganese, or a combination thereof, x is 0.05 to 0.50, and y is chemical stoichiometry. The catalyst may further include an auxiliary agent loaded on the support. The catalyst can be used to decompose gaseous ammonia.
Resumen de: US2025186304A1
A hydrogen generation device includes a tubular tank and a top lid combined with the tank. An immersion tube in which a hydrogen generating agent package is stuffed is placed in the tank. The hydrogen generating agent package is submerged in water after water is poured in the tank to generate hydrogen, which is released through a tank opening of the tank. The hydrogen generating agent package accommodates hydrogen generating agent powders including calcium oxide and aluminum powders, both of which are mixed and wrapped with a nonwoven fabric, as well as a little catalytic sodium carbonate added inside. For inhibition of free radicals and promotion of metabolism, the hydrogen generation device is further provided with a connector and a hose for a skin-care instrument, a nasal mask, an eye shield or an ear cleaner through which hydrogen is supplied as required.
Resumen de: KR20250084095A
신재생에너지 기반의 그린수소 생산 시스템 및 방법을 제공한다. 신재생에너지 기반의 그린수소 생산 시스템으로서, 전력계통; 재생에너지 기반의 전력을 생성하는 재생에너지 제공파츠; 및 상기 전력계통, 상기 재생에너지 제공파츠 중 적어도 어느 한 곳으로부터 전력을 공급받고, 기 설정된 고순도의 수소생산을 수행하는 수소 생산파츠를 포함한다.
Resumen de: US2025001352A1
The present disclosure relates to a pressure swing adsorption apparatus for high purity hydrogen purification from ammonia decomposition and a hydrogen purification method using the same, and more specifically, the pressure swing adsorption apparatus includes a plurality of adsorption towers including a guard bed unit and a hydrogen purification unit, in which each adsorption tower is packed with different adsorbents, to purify high purity hydrogen from mixed hydrogen gas produced after ammonia decomposition, make it easy to replace the adsorbent for ammonia removal, minimize the likelihood that the lifetime of the adsorbent in the hydrogen purification unit is drastically reduced by trace amounts of ammonia, efficiently recover hydrogen of the guard bed unit, thereby maximizing the hydrogen recovery rate compared to a conventional pressure swing adsorption process including a pretreatment unit and a hydrogen purification unit, and respond to a large change in ammonia concentration in the raw material.
Resumen de: CN119243213A
The invention relates to the technical field of electro-catalysis hydrogen evolution, and discloses a preparation method and application of a double-gradient self-supporting hydrogen evolution electrode. The preparation method comprises the following steps: forming an oxygen-containing hydrophilic group on the surface of conductive carbon cloth to obtain pretreated carbon cloth; a metal organic framework composed of Co and dimethylimidazole grows on the surface of the pretreated carbon cloth in an in-situ self-growth mode, the metal organic framework forms triangular protrusions on the surface of the pretreated carbon cloth, roasting is conducted, and a geometric gradient electrode is obtained; and covering the surface of the geometric gradient electrode with a mask distributed with a plurality of through holes, applying a hydrophobic and aerophilic coating on the surface of the geometric gradient electrode through the through holes, and forming a plurality of hydrophobic and aerophilic areas on the surface of the geometric gradient electrode. By adopting the preparation method disclosed by the invention, the overpotential and the overpotential growth rate of the electrode under high current density can be effectively reduced.
Resumen de: US2025188631A1
An embodiment water electrolysis catalyst includes iridium oxide including a rutile phase and iridium-nickel oxide including a hexagonal phase. An embodiment method of preparing a water electrolysis catalyst includes preparing a mixture including an iridium precursor, a nickel precursor, and cysteamine hydrochloride, drying the mixture, grinding the dried mixture, and firing a ground product, wherein the water electrolysis catalyst includes iridium oxide including a rutile phase and iridium-nickel oxide including a hexagonal phase.
Resumen de: DE102023212354A1
Elektrolysesystem mit einem Stack (1), der einen Anodenraum (2) und einen Kathodenraum (3) aufweist und der dazu eingerichtet ist, Wasser elektrolytisch in Wasserstoff und Sauerstoff aufzuspalten, wobei der Kathodenraum (3) einen Einlass (9) und einen Auslass (10) aufweist. Dem Stack (1) ist ein Gas-Flüssig-Separator (11) zugeordnet, der über eine Ausleitung (12) mit dem Auslass (10) des Kathodenraums (3) verbunden ist und in dem Flüssigkeit von Gas getrennt wird, wobei der Gas-Flüssig-Separator einen Gasauslass (13) zum Abströmen des abgetrennten Gases aufweist. Der Gasauslass (13) mündet in einen zentralen Gas-Flüssig-Separator (25) zur Trennung von Flüssigkeit und Gas.
Resumen de: CN118374814A
The invention discloses a device for preparing arsine through double-anode electro-catalysis and application, the device comprises a cathode electrolytic bath and two anode electrolytic baths arranged on the two sides of the cathode electrolytic bath, the cathode electrolytic bath and the anode electrolytic baths are separated through diaphragms, and anode catalysts are tightly attached to the side faces, facing the anode electrolytic baths, of the diaphragms; a cathode electrode is inserted into the cathode electrolytic bath and is connected with the negative electrode of the power supply through a wire, and the two anode catalysts on the two opposite sides of the two diaphragms are connected in parallel through wires and are connected with the positive electrode of the power supply. According to the invention, a dual-channel anode electrolytic bath structure is designed, and the capacity of transferring protons by reaction is regulated and controlled by increasing the quantity of the anode electrolytic bath and the anode catalyst, so that the current density of the reaction is directly improved, on one hand, the oxygen generation rate of the anode is improved, and on the other hand, the generation of cathode arsine is accelerated.
Resumen de: PL450397A1
Przedmiotem zgłoszenia jest przedstawiony na rysunku układ do kompresji wodoru, który składa się z elektrolizera, sprężarki i zbiornika do magazynowania, przy czym sprężarka realizuje kompresję wodoru w dwóch fazach: — fazie I kompresji - do magazynowania wodoru w zbiornikach oraz — fazie II kompresji - do tankowania urządzeń wodorem. Wynalazek znajduje zastosowanie w tworzeniu stacji tankowania aut wodorowych, magazynowaniu energii oraz transporcie i logistyce.
Resumen de: JP2025086209A
【課題】メタン合成の際に用いる触媒の劣化を抑制しつつ、メタン製造システムを高効率で動作維持可能に制御することを可能とする。【解決手段】メタン製造方法は、供給された電気エネルギーを用いて水電解装置における水電解により水素を生成する工程と、生成された水素と、二酸化炭素とをメタン合成装置において反応させてメタンを製造し、メタンを製造する際に発生した反応熱を前記水電解装置に伝導させる工程と、前記メタン合成装置の温度が、予め設定された目標温度となるように前記水電解装置に供給する電気エネルギー量を調整する工程と、を備える。【選択図】図3
Resumen de: US2025188630A1
An oxynitride catalyst includes NiaMbNcOd, wherein M is Nb, Mn, or Co, a>0, b>0, c>0, d>0, and a+b+c+d=1. A hydrogen evolution device includes an anode and a cathode dipped in an electrolyte, and the anode includes the oxynitride catalyst. The oxynitride catalyst can be disposed on a support. The oxynitride catalyst may have a polyhedral structure.
Resumen de: JP2025086206A
【課題】メタン製造システムを高効率で動作維持可能に制御することを可能とする。【解決手段】メタン製造方法は、供給された電気エネルギーを用いて水電解装置における水電解により水素を生成する工程と、生成された水素と、二酸化炭素とをメタン合成装置において反応させてメタンを合成し、メタンを合成する際に発生した反応熱を前記水電解装置に伝導させる工程と、前記水電解装置から自己発熱によって発生する余剰熱量と前記メタン合成装置から前記水電解装置に伝導した熱エネルギー量の合計が、前記水電解装置における水電解反応において必要となる熱エネルギー量と等しくなるように前記水電解装置に供給する電気エネルギー量を調整する工程と、を備える。【選択図】図3
Resumen de: CN117285004A
The invention provides a ubiquitous light-gathering catalytic hydrogen production device and method and application. The ubiquitous light-gathering catalytic hydrogen production device comprises a hydrogen production unit, an artificial light-gathering light source unit and an electric power adjusting unit, the hydrogen production unit comprises a reaction tank and is used for preparing hydrogen and oxygen through artificial photocatalytic decomposition of water; the artificial condensation light source unit comprises a reflection assembly and a plurality of light-emitting assemblies, the light-emitting assemblies are used for emitting artificial light, and the reflection assembly is used for reflecting and gathering the artificial light into the reaction tank; the electric power adjusting unit is used for providing electric energy for the artificial condensation light source unit. According to the invention, electric power is converted into artificial light of a single wave band, artificial photocatalytic hydrogen production is carried out in a condensation mode, and the device is suitable for various electric power hydrogen production energy storage with fluctuation characteristics, especially hydrogen energy storage of low-price and negative-price electric power such as renewable energy power generation electric energy, valley electricity, abandoned electricity and the like.
Resumen de: US2025179901A1
A method of producing hydrogen and sequestering carbon or sulfur includes generating a fluid including at least one of water, steam, hydrogen sulfide, carbon dioxide and heat as a byproduct of a surface facility and injecting the fluid into a subsurface formation. The subsurface formation can include a porous rock, in various forms of porosity such as intragranular, intergranular, fracture porosity. The method can further include heating the fluid to stimulate an exothermic reaction of the fluid with components of the subsurface rock formation and produce a hydrogen reaction product and one or more of sulfur minerals from the hydrogen sulfide or carbon minerals from the carbon dioxide. The fluid can be heated to between about 25° C. and about 500° C. The method can also include extracting the hydrogen produced from the reaction of the fluid with the subsurface rock formation and mineralizing sulfur or carbon in the porous rock.
Resumen de: US2025179942A1
An apparatus includes one or more thermal storage blocks that define a radiation chamber and a fluid flow slot positioned above the radiation chamber to define a fluid pathway in a first direction. The apparatus includes a heater element positioned adjacent to the radiation chamber in a second, different direction, wherein the radiation chamber is open on at least one side to the heater element. The apparatus includes a fluid movement system configured to direct a stream of fluid through the fluid pathway in the first direction.
Resumen de: DE102023211891A1
Die vorliegende Anmeldung betrifft Verfahren sowie eine Anlage (10) zur Aufbereitung eines Sauerstoffgases, welches mittels Elektrolyse von Wasser und/oder Wasserdampf erzeugt und als Oxidationsmittel in einer hüttentechnischen Einrichtung (1) eingesetzt wird, wobei das mittels der Elektrolyse erzeugte Sauerstoffgas wenigstens einem Trocknungsschritt unterzogen wird, über welchen die in dem Sauerstoffgas enthaltenen Begleitgase Wasserstoff und Wasser, vorzugsweise quantitativ, entfernt werden
Nº publicación: WO2025114702A1 05/06/2025
Solicitante:
SJP INNOVATION LTD [GB]
SJP INNOVATION LIMITED
Resumen de: WO2025114702A1
There is provided a an apparatus for the photolysis of a target material. The apparatus comprises a chamber arranged to receive a target material, at least one emitter arranged to emit an electromagnetic radiation signal at or towards the target material in use, an electromagnetic field generator configured to generate an electromagnetic field within the chamber in use, and a controller. The controller is configured to control the electromagnetic field generator to generate an electromagnetic field in the presence of the target material, such that the electromagnetic radiation signal emitted by the at least one emitter is incident upon the target material in the presence of the generated electromagnetic field.