Resumen de: CN119660813A
本发明公开了一种深度释放晶格氧能力尖晶石氧载体及其制备方法和应用,属于氢能制备相关技术领域。本发明通过将Cu、Mn、Ni、Ca、Sr等元素等摩尔比的掺杂到尖晶石型结构的金属铁基氧载体AFe2O4中,借助多金属元素对尖晶石型氧载体(AFe2O4)的A位原子表现出了稀释作用,结合促进晶格氧释放的多金属效应。并且,尖晶石型氧载体(AFe2O4)本身优越的吸附能力和循环稳定性,将新型氧载体应用化学链制氢(CLR)中到实现对废塑料的回收利用和高纯氢气的高效制取。由此解决纯Fe2O3氧载体在化学链制氢(CLR)中存在活性不足、表面积碳严重和循环稳定性差等问题。
Resumen de: CN119663357A
本发明属于电解水领域,具体涉及一种金属氟化物@磷化物自支撑电极,包括泡沫基底以及复合在其表面的金属氟化物@磷化物活性层,所述的活性层包括过渡金属的磷化物层及其氟化物层,其中,磷化物层复合在泡沫基底侧,所述的氟化物层设置在表层。本发明还包括所述的电极的制备和应用。本发明创新地预先通过助剂A和助剂B辅助的溶剂热方式在泡沫基底上修饰过渡金属,随后以其为成核靶点依次进行后续的气相磷化和气相氟化处理,如此能够优化材料的层级结构,改善材料的界面稳定性,进而可以显著改善制备的材料的耐碱性,改善其HER/OER性能,改善水全电解的性能。
Resumen de: CN119663354A
本发明公开了一种金属氢氧化物纳米纤维及其制备方法和应用。本发明的金属氢氧化物纳米纤维的组成包括钴‑镍的氢氧化物,由CoxNiy‑MOF纳米纤维进行电化学活化制成,0
Resumen de: CN119663313A
本发明公开了一种连续回收低浓重水的加压质子交换膜电解水制氢系统,涉及重水回收技术领域,包括:水处理和纯化模块、PEM电解水制氢模块、氢气存储模块和低浓重水产品存储模块;PEM电解水制氢模块包括电解槽阳极模块、电解槽阴极模块、质子交换膜、氧气和氢气的高压气液分离器模块和低压气液分离器模块;氧气高压气液分离器模块的水进入到电解槽阳极模块中进行电解,产生的质子透过质子交换膜到电解槽阴极模块形成氢气;电解槽阳极模块电解之后的水进入氧气高压气液分离器模块形成循环;经过多次循环电解之后的水经过低压气液分离器模块分离之后形成低浓度重水。本发明缓解了现有技术在电解水制氢项目中缺乏连续生产回收低浓重水方案的技术问题。
Resumen de: CN119663350A
本发明公开了一种由氮掺杂石墨烯管三维导电骨架和原位生长于其表面的Ni3Fe/NiFe2O4异质结构组成的复合电解水析氧电催化剂Ni3Fe/NiFe2O4@N‑GNTs。异质结构Ni3Fe/NiFe2O4为薄片状,垂直生长在氮掺杂石墨烯管的表面。制备方法包括:通过水热反应得到NiFe氢氧化物@N‑GNTs前驱体,随后在马弗炉中进行空气煅烧,生成NiFe2O4@N‑GNTs中间体;最后在管式炉中,采用Ar‑H2(H210%)气氛,350~370℃进行还原反应2h,获得Ni3Fe/NiFe2O4@N‑GNTs复合析氧电催化剂。得益于异质界面对电子结构的调控以及氮掺杂石墨烯管骨架良好导电性等的协同作用,该电催化剂在碱性介质中表现出优异的电解水析氧性能及优越的稳定性。
Resumen de: CN119663312A
本发明属于电解水制氢气液分离技术领域,公开了一种碱性电解水制氢气液分离系统和分离方法,碱性电解水制氢气液分离系统,包括电解装置、气液沉降分离装置、气液旋流分离装置、电解液供应装置和热源装置,其中,电解液供应装置与电解装置之间连接有加热装置;电解装置的气体出口依次与气液沉降分离装置、气液旋流分离装置连接;所述气液沉降分离装置的内部设置有空腔,空腔中部的横截面上分布设置有倾斜导流板组件,气液混合物进口设置于空腔的底部,气体进口位于空腔的顶部;气液旋流分离装置的进口为切向进口,其内壁设置有耐磨层。具备提高制氢效率和气体纯度、增强系统稳定性和可靠性和降低能源消耗和成本等优点。
Resumen de: CN119663546A
本发明提供了一种核壳型二氧化钛‑聚苯硫醚电解水隔膜的制备方法。首先,通过超声混合二氧化钛前驱体、无水乙醇、醋酸水溶液,同时,将聚乙烯吡咯烷酮溶于N,N‑二甲基甲酰胺中得到助纺剂。将二氧化钛前躯体液和助纺剂溶液混合后得到内层纺丝液。其次,制备外层纺丝液,包括聚乙烯醇和聚苯硫醚乳液。通过同轴静电纺丝技术,将这两种溶液纺丝成膜的前驱体。最后,前驱体经过干燥和煅烧工艺处理,得到核壳型二氧化钛‑聚苯硫醚电解水隔膜。该方法简单,可控性强,适用于电解水反应中的隔膜制备,有利于工业化放大。
Resumen de: CN119095792A
The present invention relates to a process for producing methanol by synthesis gas produced by combining electrolysis of a water feedstock for producing a stream comprising hydrogen with electrolysis of a carbon dioxide rich stream for producing a stream comprising CO and CO2 wherein the CO/CO2 molar ratio of the synthesis gas is greater than 2. The invention also relates to a method for producing syngas by subjecting a combined feed gas stream of CO2 and steam to one-way co-electrolysis in an SOEC unit.
Resumen de: US2025092541A1
A sulfur-modified carbon material contains conductive carbon black and sulfur elements distributed therein. The total sulfur content in the sulfur-modified carbon material is equal to or more than 1.2 times, preferably equal to or more than 1.5 times, the surface sulfur content. A process for preparing the sulfur-modified carbon material includes an impregnation step to impregnate the conductive carbon black with a solution containing sulfur at 10-80° C. for 1-5 h, and a drying step.
Resumen de: US2025092541A1
A sulfur-modified carbon material contains conductive carbon black and sulfur elements distributed therein. The total sulfur content in the sulfur-modified carbon material is equal to or more than 1.2 times, preferably equal to or more than 1.5 times, the surface sulfur content. A process for preparing the sulfur-modified carbon material includes an impregnation step to impregnate the conductive carbon black with a solution containing sulfur at 10-80° C. for 1-5 h, and a drying step.
Resumen de: AU2023220801A1
A method of electric current measurement at an electrolyser cell stack is provided. The method comprises the following steps: to provide at least one sensor (11) having an element which is responsive to the presence of a magnetic flux and/or magnetic flux changes adjacent to an input or exit manifold channel (6, 7) outside of a current injector plate in the electrolyser stack, ensure an electric or a wireless connection between the sensor (11) and a recording and/or display device, supply an electrical potential difference between two current injector plates having the electrolyser cell stack arranged between them, capture a signal value indicative of magnetic flux and/or magnetic flux change at the sensor location by at least one sensor (11), make at least one signal value available for storage and/or transmission to a remote location through the wired and/or wireless connection.
Resumen de: CN119663319A
本发明提供了一种电解槽极板组件及其制备方法,涉及电解槽技术领域,所述电解槽极板组件包括极板、密封件和扩散层,所述极板、所述密封件和所述扩散层连接为一体式结构,且所述扩散层位于所述密封件所围成的区域内,并覆盖所述极板的反应区域。这样,通过将极板、密封件和扩散层构造为一体式结构,使得密封件和扩散层定位牢固,从而可以有效降低密封件发生密封未对齐和扩散层发生错位装配的风险,同时,也使得电解槽极板组件整体为一体化部件,从而可以减少交换膜电解槽的零件数量,从而简化装配工艺。
Resumen de: WO2025056228A1
The present invention relates to a process for producing hydrogen from an ammonia-containing gas with a supported catalyst in the form of a ruthenium-endowed support body, and to the use of such a ruthenium-containing supported catalyst in a process for producing hydrogen. The process comprises the providing of a supported catalyst in the form of a ruthenium-endowed support body, wherein the support body comprises a refractory oxide as support material, is cylindrical and has at least three mutually spaced-apart channels that extend fully through the support body, where one of the channels extends along a central longitudinal axis.
Resumen de: WO2025055403A1
A hydrogen drying system for hydrogen production using renewable energy. Two adsorbers (1, 2) are arranged in parallel, the two adsorbers (1, 2) alternately perform an adsorption process and a desorption process, the adsorption flow of each of the adsorbers (1, 2) changes along with the fluctuations of input renewable energy, and an operating state of each of the adsorbers (1, 2) is switched by means of accumulating the hydrogen flow treated by each of the adsorbers (1, 2) during a single adsorption process; a pre-adsorber (3) is connected in series to one of the adsorbers (1, 2) and is used for assisting in the desorption process; and during the desorption process, hydrogen in the pre-adsorber (3) or the adsorbers (1, 2) is circulated by means of a hydrogen self-circulation apparatus (4), and the desorption process is independent of the adsorption process. Since the adsorption process and the desorption process are independent of each other, after a raw gas enters the adsorbers (1, 2) and absorption is completed, all the raw gas is output; and during the desorption process, hydrogen in the pre-adsorber (3) or the adsorbers (1, 2) is circulated by means of the hydrogen self-circulation apparatus (4) to realize hydrogen regeneration, so that the problem of desorption being incomplete due to desorption interruption caused by the flow fluctuations of the raw hydrogen is solved, intermittent and fluctuating renewable energy can be matched to perform hydrogen production, and an op
Resumen de: US2025091905A1
An eFuels plant and process for producing synthetic hydrocarbons using renewable energy are disclosed. The eFuels plant comprises a hydrocarbon synthesis (HS) system and a renewable feed and carbon/energy recovery (RFCER) system. The RFCER comprises a heat integration system between an electrolysis unit and a thermal desalination unit. The thermal desalination unit is configured to receive seawater and a first amount of thermal energy and to produce a desalinated water stream and a brine effluent stream. The electrolysis unit is configured to receive a demineralized water stream and an amount of electrical energy to produce a hydrogen stream, an oxygen stream, and a second amount of thermal energy, wherein the second amount of thermal energy is absorbed by a second low temperature heat transfer fluid stream to produce a second high temperature heat transfer fluid stream. A fluidly segregated piping system containing a heat transfer fluid is configured to withdraw heat from the electrolysis unit and deliver heat to the thermal desalination unit. A control system manages flows of the heat transfer fluid between the electrolysis unit and the thermal desalination unit, the addition of heat to the flow to the thermal desalination unit, and/or the removal of heat from the flow to the electrolysis unit.
Resumen de: WO2025056589A1
The present invention relates to an ammonia synthesis plant having a hydrogen device and a synthesis circuit, wherein the synthesis circuit has a conveying device, a converter and a first bypass line. The hydrogen device is designed to provide hydrogen. The conveying device is designed to cyclically convey a gas mixture, containing nitrogen, hydrogen and ammonia, in a synthesis circuit conveying direction, wherein the conveying device has a suction side and a pressure side. The converter is designed to catalytically convert nitrogen and hydrogen at least partially into ammonia, wherein the converter has an inlet and an outlet, wherein the inlet of the converter is fluidically connected to the pressure side of the conveying device and the outlet of the converter is fluidically connected to the suction side of the conveying device. The first bypass line is arranged from the suction side of the conveying device to the pressure side of the suction device parallel to the conveying device in the fluidically opposite direction and is designed for the stoppable return of a first partial stream of the gas mixture from the pressure side of the conveying device to the suction side of the conveying device, wherein the first bypass line has a cooling device which is designed to cool the first partial stream of the gas mixture. The first bypass line has a second bypass line, which is arranged parallel to the cooling device in the fluidically same direction, and which is designed for the st
Resumen de: DE102023209125A1
Die Erfindung betrifft ein Verfahren zum Betreiben einer Elektrolyseanlage (1), umfassend einen Stack (2) mit einer Anode (3) und einer Kathode (4), wobei im Normalbetrieb der Elektrolyseanlage (1) der Anode (3) über einen Wasserkreislauf (5) mit integrierter Pumpe (6) Wasser zugeführt wird und das Wasser im Stack (2) durch Elektrolyse in Wasserstoff und Sauerstoff aufgespalten wird, und wobei der durch Elektrolyse erzeugte Wasserstoff über einen Kathodenauslass (10) des Stacks (2) und eine hieran angeschlossene Medienleitung (7) einem Gas-Flüssigkeit-Separator (8) zugeführt wird. Erfindungsgemäß ist vorgesehen, dassa) beim Abschalten der Elektrolyseanlage (1) ein Absperrventil (11) in einer Inertgasleitung (12) geöffnet wird, die einen Inertgasbehälter (13) mit der Kathode (4) verbindet, und die Kathode (4) mit dem Inertgas gespült wird, während die Wasserversorgung der Anode (3) eingestellt wird, undb) beim Wiederanfahren der Elektrolyseanlage (1) die folgenden Schritte ausgeführt werden:(i) Schließen des in die Inertgasleitung (12) integrierten Absperrventils (11),(ii) Versorgen der Anode (3) mit Frischwasser über eine an den Wasserkreislauf (5) angeschlossene Frischwasserversorgung (14) bei noch abgeschaltetem Strom,(iii) Versorgen des Stacks (2) mit dem für die Elektrolyse benötigten Strom und(iv) Produktion einer Wasserstoffmenge, die mindestens der Menge an in der Kathode (4) vorhandenem Inertgas, vorzugsweise der 1,5- bis 10-fachen Menge an in der Kath
Resumen de: DE102024119758A1
Die vorliegende Erfindung betrifft eine Vorrichtung (10) zur Erzeugung von Energie, aufweisend wenigstens ein Photovoltaikmodul (17) mit einer oder mehreren Photovoltaikzellen (102; 17a), sowie wenigstens ein Elektrolysemodul (19) mit wenigstens einer Elektrolysezelle (19d). Um eine Vorrichtung (10) bereitzustellen, die zum einen konstruktiv einfach aufgebaut ist, ohne dass es für deren Betrieb zwischengeschalteter Komponenten bedarf, und die zum anderen vielseitig eingesetzt und modular verwendet werden kann, ist vorgesehen, dass die wenigstens eine Photovoltaikzelle (17a) elektrisch direkt mit der wenigstens Elektrolysezelle (19d) verbunden ist, und dass das Photovoltaikmodul (17), insbesondere die wenigstens eine Photovoltaikzelle (17a) und das Elektrolysemodul (19), insbesondere die wenigstens eine Elektrolysezelle (19d) konfiguriert sind, dass die Maximalleistungs-Spannung der Photovoltaikzellen (17a) der Spannung im Betriebspunkt der wenigstens einen Elektrolysezelle (19d) entspricht.
Resumen de: DE102023125551A1
Die Erfindung betrifft eine Elektrolysevorrichtung (1) zur elektrochemischen Erzeugung von Wasserstoff aus Wasser, mit- einem Kathodenbereich (3) und einem von dem Kathodenbereich (3) separierten Anodenbereich (5),- einer Wasserzufuhrvorrichtung (7), die eingerichtet ist, um dem Anodenbereich (5) Wasser zur elektrochemischen Umsetzung in dem Anodenbereich (5) zuzuführen,- eine Wasserrückführvorrichtung (9), die eingerichtet ist, um Wasser aus dem Kathodenbereich (3) in den Anodenbereich (5) zurückzuführen, wobei- die Wasserrückführvorrichtung (9) eine Energiewandlungsvorrichtung (11) aufweist, die angeordnet und eingerichtet ist, um Energie des über die Wasserrückführvorrichtung (9) zurückgeführten Wassers zu wandeln.
Resumen de: US2025092537A1
In this disclosure, a process of recycling acid, base and the salt reagents required in the Li recovery process is introduced. A membrane electrolysis cell which incorporates an oxygen depolarized cathode is implemented to generate the required chemicals onsite. The system can utilize a portion of the salar brine or other lithium-containing brine or solid waste to generate hydrochloric or sulfuric acid, sodium hydroxide and carbonate salts. Simultaneous generation of acid and base allows for taking advantage of both chemicals during the conventional Li recovery from brines and mineral rocks. The desalinated water can also be used for the washing steps on the recovery process or returned into the evaporation ponds. The method also can be used for the direct conversion of lithium salts to the high value LiOH product. The method does not produce any solid effluent which makes it easy-to-adopt for use in existing industrial Li recovery plants.
Resumen de: US2025091976A1
A method of producing formaldehyde, the method comprising: generating electrolytic hydrogen from the electrolysis of water; providing a feedstock gas stream comprising the electrolytic hydrogen and one or both of carbon monoxide and carbon dioxide; converting at least a portion of the feedstock gas to methanol; converting at least a portion of the methanol to formaldehyde and hydrogen; separately recovering at least some of the formaldehyde and at least some of the hydrogen; and recycling at least some of the recovered hydrogen to the feedstock gas stream.
Resumen de: US2025091862A1
A plant, such as a hydrocarbon plant, is provided, which has a syngas stage for syngas generation and a synthesis stage where the syngas is synthesized to produce syngas derived product, such as hydrocarbon product. The plant makes effective use of various streams; in particular, CO2 and H2. The plant does not comprise an external feed of hydrocarbons. A method for producing a product stream, such as a hydrocarbon product stream is also provided.
Resumen de: US2025092532A1
A process of producing hydrogen from air comprising: contacting a hygroscopic liquid with a source of air to absorb a water content from said source of air into the hygroscopic liquid; and electrolytically converting the water absorbed in the hygroscopic liquid into hydrogen and oxygen.
Resumen de: US2025092531A1
The invention generally concerns processes for the production of hydrogen gas.
Nº publicación: US2025092543A1 20/03/2025
Solicitante:
TOYOTA ENG & MFG NORTH AMERICA [US]
TOYOTA MOTOR CO LTD [JP]
Toyota Motor Engineering & Manufacturing North America, Inc,
Toyota Jidosha Kabushiki Kaisha
Resumen de: US2025092543A1
An oxygen evolution reduction electrocatalyst includes a pyrochlore compound with the chemical formula Sm2Ru2xM2-2xO7, where M is selected from the group consisting of Ir, Sc, Fe, Cu, Pd, Cr, and Rh, and x is less than 1.0 and greater than or equal to 0.5. Also, a water electrolysis cell includes an anode, a cathode, an electrolyte, and the oxygen evolution reduction electrocatalyst.