Ministerio de Industria, Turismo y Comercio LogoMinisterior
 

Alerta

Resultados 839 resultados
LastUpdate Última actualización 05/10/2025 [06:59:00]
pdfxls
Publicaciones de solicitudes de patente de los últimos 60 días/Applications published in the last 60 days
previousPage Resultados 775 a 800 de 839 nextPage  

Electrolizador de óxido sólido con módulo de pilas y método para intercambiar módulo de pilas

NºPublicación:  CL2025001210A1 08/08/2025
Solicitante: 
TOPSOE AS [DK]
TOPSOE A/S
KR_20250097822_PA

Resumen de: CN120202324A

The invention relates to a stack module having at least one solid oxide electrolysis stack comprising a plurality of stacked solid oxide electrolysis cells, in which the stack module comprises two gas inlet connections and two gas outlet connections. According to the invention, at least one solid oxide electrolysis stack is encapsulated in a metal container, with two gas inlet connections and two gas outlet connections connected to the metal container. The invention further relates to a solid oxide electrolyzer having at least one stacked module and to a method for replacing a stacked module of a solid oxide electrolyzer.

水电解系统

NºPublicación:  CN120443213A 08/08/2025
Solicitante: 
本田技研工业株式会社
CN_120443213_PA

Resumen de: US2025250687A1

A water electrolysis system includes a flow rate adjusting valve for relatively changing a first flow rate which is a flow rate of water flowing through a first flow path portion extending from a first water lead-out unit, and a second flow rate which is a flow rate of water flowing through a second flow path portion extending from a second water lead-out unit.

High-efficiency hydrogen production system using direct air capture using renewable energy

NºPublicación:  KR20250119893A 08/08/2025
Solicitante: 
주로우카본
KR_20250119893_PA

Resumen de: WO2025165039A1

The present invention relates to a high-efficiency hydrogen production system by a direct air capture method using renewable energy. According to an embodiment of the present invention, the high-efficiency hydrogen production system comprises: a direct air capture device in which a chemical reaction occurs when an alkaline liquid mixture containing a specific component, such as potassium hydroxide or sodium hydroxide, is brought into contact with air, to capture carbon dioxide from the air; an electrolysis tank into which pure water and the sodium carbonate or potassium carbonate solution generated in the process of the chemical reaction for capturing carbon dioxide in the direct air capture device are introduced and then electrolyzed by using renewable energy including solar or wind power generation energy, to generate a gas containing hydrogen and a liquid containing potassium hydroxide or sodium hydroxide and separate and extract the generated gas and liquid; a gas storage tank in which the gas separated and extracted from the electrolysis tank is stored; and a liquid storage tank in which the remaining liquid after the gas is separated and extracted from the electrolysis tank is stored and potassium hydroxide or sodium hydroxide contained in the liquid is reintroduced into the direct air capture device.

Solid oxide electrolysis cell cascade system

NºPublicación:  KR20250120072A 08/08/2025
Solicitante: 
한국기계연구원
KR_20250120072_PA

Resumen de: KR20250120072A

본 발명의 일 실시예에 따른 캐스케이드 방식의 고체산화물 수전해셀 시스템은 캐스케이드 방식의 고체산화물 수전해셀 시스템은 스팀을 공급하는 스팀 공급부; 에어를 공급하는 에어 공급부; 스팀 공급부로부터 스팀을 공급받아 수소를 포함하는 반응 생성물로 변환하는 적어도 하나 이상의 스택을 포함하는 고체산화물 수전해셀; 고체산화물 수전해셀에서 배출되는 고온의 반응 생성물을 스팀 공급부에서 고체 산화물 수전해셀로 공급되는 스팀과 열 교환하는 제1 열 교환기; 제1 열 교환기를 통해 열 교환된 반응 생성물을 응축하는 응축기; 응축기를 통해 수증기가 제거된 수소를 저장하는 수소 저장부; 응축기를 통해 수증기가 제거된 수소의 일부를 스팀 공급부에서 고체산화물 수전해셀로 공급되는 스팀에 혼합되도록 재순환하는 수소 재순환 블로어; 고체산화물 수전해셀에서 배출되는 고온의 에어를 에어 공급부에서 고체산화물 수전해셀로 공급되는 에어와 열 교환한 후 배출하는 제2 열 교환기; 고체산화물 수전해셀에서 배출되는 고온의 에어의 일부를 다시 고체산화물 수전해셀에서 유동하는 에어에 공급되도록 재순환하는 에어 재순환 블로어; 배관 어셈블리; 및 제어부; 를 포함한다.

Sistema de celdas electroquímicas con almacenamiento de energía térmica y método relativo

NºPublicación:  CL2025001126A1 08/08/2025
Solicitante: 
NUOVO PIGNONE TECNOLOGIE S R L [IT]
NUOVO PIGNONE TECNOLOGIE - S.R.L
CN_120391000_PA

Resumen de: CN120391000A

An electrochemical cell system (100) comprising: an electrochemical cell arrangement (10); a control unit (20) configured to operate the electrochemical cell arrangement (10) only as an electrolytic cell or as a fuel cell; a heating unit (40) located outside the electrochemical cell arrangement (10), the heating unit being thermally coupled to the electrochemical cell arrangement (10) and the heating unit being configured to alternately store heat from the electrochemical cell arrangement (10) to the heating unit (40) and supply heat from the heating unit (40) to the electrochemical cell arrangement (10); and a transfer arrangement (30) configured to alternately transfer heat from the electrochemical cell arrangement (10) to the heating unit (40) and from the heating unit (40) to the electrochemical cell arrangement (10).

密封垫装置以及密封垫

NºPublicación:  CN120457293A 08/08/2025
Solicitante: 
NOK\u682A\u5F0F\u4F1A\u793E
CN_120457293_PA

Resumen de: WO2024142618A1

A gasket device (1) comprises a gasket (2) and a spacer (3). The spacer (3) supports separators (101, 102) which are members facing each other and an electrolyte membrane (104) between the separators (101, 102) and the electrolyte membrane (104) such that the separators (101, 102) and the electrolyte membrane (104) face each other via spaces (100a, 100b). The gasket (2) surrounds the space (100a) or the space (100b) between the separator (101) or the separator (102) and the electrolyte membrane (104). Moreover, the spacer (3) surrounds the gasket (2) from the outer side between the separators (101, 102) and the electrolyte membrane (104). The gasket (2) and the spacer (3) are in contact with each other in the expanding direction of the spaces (100a, 100b).

PROCESS FOR THE PREPARATION OF SYNGAS FROM CARBONACEOUS WASTE MATERIAL

NºPublicación:  WO2025163482A1 07/08/2025
Solicitante: 
POLITECNICO DI MILANO [IT]
POLITECNICO DI MILANO
WO_2025163482_PA

Resumen de: WO2025163482A1

Process for the production of syngas from carbonaceous waste material and CO2 comprising the following stages: a stage a) comprising the reaction R1 in which the carbonaceous material is reacted with carbon dioxide to obtain carbon monoxide according to the following reaction scheme: R1 CO2 + C = 2 CO; a stage b) of producing H2 and adding it to the carbon monoxide obtained in stage a) to obtain syngas, wherein stage b) comprises at least one of the following stages: bl) the carbon monoxide from the previous stage is reacted with water vapour to obtain carbon dioxide and hydrogen according to the following reaction scheme: R2 CO + H2O = CO2 + H2 b2) producing hydrogen by means of electrolysis of water, which is added to the carbon monoxide from stage a). The invention also relates to the unit in which stages a) and bl) are conducted as well as the related apparatus comprising the aforementioned unit.

MESH OXYGEN ELECTRODE WITH SQUARE MACROPORES FOR ANION-EXCHANGE MEMBRANE UNITIZED REGENERATIVE FUEL CELL AND ANION-EXCHANGE MEMBRANE UNITIZED REGENERATIVE FUEL CELLE INCLUDING THE SAME

NºPublicación:  KR20250118913A 07/08/2025
Solicitante: 
동국대학교산학협력단서울대학교산학협력단한국공학대학교산학협력단기초과학연구원
KR_20250118913_PA

Resumen de: KR20250118913A

본 발명은, 평행하게 배열된 복수의 탄소나노튜브를 포함하는 탄소나노튜브 층을 2개층 이상 적층하여 이루어지는 탄소나노튜브 구조체 및 상기 탄소나노튜브 구조체 상에 형성된 촉매층을 포함하되, 상기 탄소나노튜브 구조체에 포함된 임의의 탄소나노튜브 층에 포함된 평행하게 배열된 복수의 탄소나노튜브가, 상부 또는 하부에 이웃한 탄소나노튜브 층에 포함된 평행하게 배열된 복수의 탄소나노튜브와 직교해 형성된 사각형의 매크로 기공을 포함하는 것을 특징으로 하는, 음이온 교환막 일체형 연료전지용 산소 전극 및 이를 포함하는 음이온 교환막 일체형 연료전지에 대한 것이다.

SYSTEM AND METHOD FOR CO-PRODUCING GREEN SODIUM CARBONATE AND AMMONIUM CHLORIDE BY USING RENEWABLE ENERGY SOURCES

NºPublicación:  WO2025161658A1 07/08/2025
Solicitante: 
CHINA TIANCHEN ENG CORPORATION [CN]
\u4E2D\u56FD\u5929\u8FB0\u5DE5\u7A0B\u6709\u9650\u516C\u53F8
WO_2025161658_PA

Resumen de: WO2025161658A1

A system and method for co-producing green sodium carbonate and ammonium chloride by using renewable energy sources. The system comprises a renewable energy source power generation subsystem, a water electrolysis subsystem, an air separation subsystem, an ammonia synthesis subsystem, a tail-gas pretreatment subsystem, a waste-salt pretreatment subsystem and a sodium carbonate synthesis subsystem. By utilizing renewable wind and solar energy to generate electricity for electrolytic hydrogen production and air separation, the impact of renewable energy power generation on a power grid and the difficulty in balancing the fluctuating power supply of the power grid are solved, on-site consumption of green power is achieved, the green power is converted on site into green products with economic value added, and stable operation of a green electricity-green hydrogen-green chemical production line is achieved; and industrial waste salts and the industrial emissions of carbon dioxide tail gas are used as green raw materials for sodium carbonate, and are integrated with carbon tail gas and industrial waste salts discharged by industrial enterprises in the vicinity, and resource utilization of waste is conducted, thereby reducing carbon emissions and also realizing a green circular economy.

HYDROGEN PRODUCTION SYSTEM AND METHOD FOR OPERATING HYDROGEN PRODUCTION SYSTEM

NºPublicación:  AU2024239221A1 07/08/2025
Solicitante: 
MITSUBISHI HEAVY INDUSTRIES LTD
MITSUBISHI HEAVY INDUSTRIES, LTD
AU_2024239221_PA

Resumen de: AU2024239221A1

This hydrogen production system is provided with: a solid oxide electrolytic cell (SOEC) that electrolyzes water vapor; a power supply device that applies a voltage equal to or greater than a thermal neutral voltage to the SOEC; and a water vapor generation device that generates at least a portion of water vapor to be supplied to the SOEC by heating water using surplus heat generation of the SOEC.

WATER ELECTROLYSIS DEVICE

NºPublicación:  US2025250686A1 07/08/2025
Solicitante: 
AISIN CORP [JP]
AISIN CORPORATION
CN_120400867_PA

Resumen de: US2025250686A1

A water electrolysis device includes a water electrolysis module that generates hydrogen by water vapor electrolysis. The water electrolysis device includes: a blower configured to supply hydrogen to the water electrolysis module; a recycle passage configured to supply generated hydrogen generated by the water electrolysis module from the water electrolysis module to an intake port of the blower; a condenser configured to condense water vapor contained in the generated hydrogen; and a temperature increasing portion configured to increase a temperature of the generated hydrogen between the condenser and the blower.

A METHOD FOR CONTROLLING A GREEN HYDROGEN PRODUCTION SYSTEM

NºPublicación:  WO2025163136A1 07/08/2025
Solicitante: 
CWP H1 ENERGY PTE LTD [SG]
HENNIG JENS [DE]
KRUMOW VLADIMIR [BG]
CWP H1 ENERGY PTE LTD,
HENNIG, Jens,
KRUMOW, Vladimir
WO_2025163136_PA

Resumen de: WO2025163136A1

A method for controlling a green hydrogen production system (100; 100'), comprising geographically distributed power generating nodes (10, 300; 300') each having at least one node center (320; 320.1, 320.2, 320.3, 320.4) and at least one electrolyzer (13) for generating green hydrogen within the system from the produced electrical energy, wherein each the power generating node (10, 300; 300') comprises multiple PV units (12; 312) and multiple wind turbine generators (WTG) (11; 301...316) as power generating units and wherein the multiple wind turbine generators units (WTG) (11; 301...316) are located in geographically dispersed sites surrounding the node center(s) (320; 320.1, 320.2, 320.3, 320.4), wherein the installed capacity (IC) of the electrolyzer (13) and all other energy consuming devices in the system is smaller than the sum of maximum capacities (MG) of all PV units (12; 312) and wind turbine generators (11; 301...316) available for operation together, wherein the method comprises at least the following steps: a) an energy demand value (EDV) of electrical power required for constantly operating the electrolyzer and other consumers is defined wherein EDV < IC; b) weather conditions in proximity of the power generating units and in windward direction of the PV units (312) are constantly monitored; c) based on weather conditions acquired from monitoring, an expected energy yield value (EEY) is calculated separately for each type of power generating unit and/or for each

HYDROGEN PRODUCTION SYSTEM, AND CONTROL SYSTEM AND METHOD THEREOF

NºPublicación:  WO2025162564A1 07/08/2025
Solicitante: 
HITACHI ENERGY LTD [CH]
HITACHI ENERGY LTD
WO_2025162564_PA

Resumen de: WO2025162564A1

A control system for a hydrogen production system is proposed. The hydrogen production system includes a plurality of electrolyzers and a plurality of converter modules each of which is coupled to one or more of the plurality of electrolyzers. The control system includes: a plurality of local controllers each of which is coupled with one or more of the plurality of converter modules and one more of the plurality of the electrolyzers; and a system controller in communication with the plurality of local controllers. The system controller is configured to receive an external dispatch value and electrolyzer state information regarding states of the plurality of electrolyzers, and to determine internal dispatch values for one or more electrolyzer from the plurality of electrolyzers based on the external dispatch value and the electrolyzer state information. A least one local controller from the plurality of local controllers associated with the one or more electrolyzers is configured to receive the internal dispatch values from the system controller, and to control operations of the one or more electrolyzers according to the internal dispatch values.

WATER ELECTROLYSIS SYSTEM AND PRODUCTION METHOD OF GAS BY ELECTROLYSIS OF WATER

NºPublicación:  US2025250685A1 07/08/2025
Solicitante: 
TOYOTA MOTOR CO LTD [JP]
TOYOTA JIDOSHA KABUSHIKI KAISHA
US_2025250685_PA

Resumen de: US2025250685A1

The water electrolysis system includes: a first cooling device that cools a gas containing a predetermined gas component generated by electrolysis of water to a first cooling temperature that is higher than or equal to a boiling point of the gas component so that the first impurity having a boiling point higher than the first cooling temperature can be separated; a gas-liquid separation device that separates the first impurity from the gas; and a second cooling device that cools the gas from which the first impurity is separated to a second cooling temperature that is lower than the boiling point of the gas component, and liquefies the gas component so that the second impurity having a boiling point lower than the second cooling temperature can be separated as a gas.

WATER ELECTROLYZER AND METHOD OF OPERATING WATER ELECTROLYZER

NºPublicación:  US2025250703A1 07/08/2025
Solicitante: 
PANASONIC IP MAN CO LTD [JP]
Panasonic Intellectual Property Management Co., Ltd
US_2025250703_PA

Resumen de: US2025250703A1

A water electrolyzer includes a water electrolysis cell, a voltage applicator, a pressure regulating valve, and a controller. The water electrolysis cell includes a diaphragm or an electrolyte membrane, an anode, and a cathode. The anode is provided in one of two spaces separated by the diaphragm, or on one of two main surfaces of the electrolyte membrane. The cathode is provided in the other one of the two spaces separated by the diaphragm, or on the other one of the two main surfaces of the electrolyte membrane. The voltage applicator applies voltage between the anode and the cathode. In start-up of the water electrolyzer, the controller controls the voltage applicator to increase current flowing through the water electrolysis cell, and then controls the pressure regulating valve to increase set pressure of the pressure regulating valve.

WATER ELECTROLYSIS SYSTEM

NºPublicación:  US2025250687A1 07/08/2025
Solicitante: 
HONDA MOTOR CO LTD [JP]
HONDA MOTOR CO., LTD
US_2025250687_PA

Resumen de: US2025250687A1

A water electrolysis system includes a flow rate adjusting valve for relatively changing a first flow rate which is a flow rate of water flowing through a first flow path portion extending from a first water lead-out unit, and a second flow rate which is a flow rate of water flowing through a second flow path portion extending from a second water lead-out unit.

ELECTROLYSIS SYSTEM

NºPublicación:  US2025250688A1 07/08/2025
Solicitante: 
AISIN CORP [JP]
AISIN CORPORATION

Resumen de: US2025250688A1

An electrolysis system includes: an electrolysis cell configured to generate hydrogen by high-temperature steam electrolysis; a steam generation unit that has a refrigerant heat exchange unit configured to perform heat exchange between heat of a heat storage unit and a refrigerant, generates a steam by heating raw material water via the refrigerant subjected to the heat exchange in the refrigerant heat exchange unit, and supplies the steam to the electrolysis cell; a heat storage supply unit that has the heat storage unit and configured to supply heat of the heat storage unit to the refrigerant heat exchange unit; and a control unit configured to control the heat storage supply unit such that an amount of heat input to the refrigerant heat exchange unit is smaller during a system startup or during a high-temperature standby than during a normal operation.

CATALYST FOR HYDROGEN EVOLUTION REACTION CONTAINING RUTHENIUM-BASED ALLOY, WATER ELECTROLYSIS ELECTRODE CONTAINING THE SAME, AND METHOD OF MANUFACTURING THE SAME

NºPublicación:  US2025250698A1 07/08/2025
Solicitante: 
KOREA INST SCI & TECH [KR]
KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
US_2025250698_PA

Resumen de: US2025250698A1

Disclosed herein are a catalyst for a hydrogen evolution reaction, a water electrolysis electrode including the same, and a method of manufacturing the same, wherein the catalyst can be manufactured at room temperature, and catalyst diversity can be given through an alloy structure including ruthenium and two or more metals. According to the present disclosure, the catalyst can be manufactured at room temperature due to characteristics of an electroplating manufacturing method, and the catalyst diversity can be given through the alloy structure that includes ruthenium and two or more metals.

ELECTROLYSIS DEVICE, SYSTEM CONSISTING OF A PLURALITY OF ELECTROLYSIS DEVICES, AND METHOD FOR OPERATING THE ELECTROLYSIS DEVICE OR THE SYSTEM

NºPublicación:  WO2025163032A1 07/08/2025
Solicitante: 
QUEST ONE GMBH [DE]
QUEST ONE GMBH
WO_2025163032_PA

Resumen de: WO2025163032A1

The invention relates to an electrolysis device (10) for generating hydrogen from water using an electric current, having a cell stack (11) comprising a plurality of cell stack elements (12) in the form of electrolysis cells; a first pressure sensor (28) for detecting a first hydrogen-side pressure; a second pressure sensor (29) for detecting a second hydrogen-side pressure; and a control device (30) which checks whether the electrolysis device (10) has a leak on the basis of the first pressure measured by the first pressure sensor (28), the second pressure measured by the second pressure sensor (29), and the electric current applied to the electrolysis device (10) for the electrolysis process.

ELECTROLYSIS SYSTEM WITH AN OXYGEN PRE-SEPARATION FUNCTION

NºPublicación:  WO2025162963A1 07/08/2025
Solicitante: 
QUEST ONE GMBH [DE]
QUEST ONE GMBH
WO_2025162963_PA

Resumen de: WO2025162963A1

The invention relates to a system consisting of a plurality of electrolysis devices (10), which are accommodated in a frame or shelf (19), for generating hydrogen from water using an electric current. Each electrolysis device (10) has at least the following: a cell stack (11) consisting of a plurality of cell stack elements (12) in the form of electrolysis cells; end plates (14, 15) lying opposite each other, wherein the cell stack (11) consisting of the cell stack elements (12) is provided and compressed between the end plates (14, 15); at least one water supply connection (16) which is formed on the end plates (14, 15) and via which water can be supplied to the respective electrolysis device (10); and at least one water discharge connection (17) which is formed on the end plates (14, 15) and via which water and oxygen can be discharged from the respective electrolysis device (10). At least one pre-separator (20) for oxygen is installed on the frame or shelf (19) and/or in the frame or shelf (19) and/or in the immediate vicinity of the frame or shelf (19) in order to separate oxygen from the water discharged from the electrolysis devices (10).

INTEGRATION OF SOLID OXIDE ELECTROLYSIS CELLS (SOEC) AND OXYGEN PURIFICATOR TO ENHANCE HIGH TEMPERATURE PROCESSES

NºPublicación:  WO2025162555A1 07/08/2025
Solicitante: 
LAIR LIQUIDE SA POUR LETUDE ET LEXPLOITATION DES PROCEDES GEORGES CLAUDE [FR]
AIR LIQUIDE JAPAN G K [JP]
L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE,
AIR LIQUIDE JAPAN G.K
WO_2025162555_PA

Resumen de: WO2025162555A1

The present disclosure relates to a method for producing a purified oxygen-containing stream, the method comprising: heating a Solid Oxide Electrolyzer Cells (SOEC) unit to a SOEC operating temperature; providing a water source or a steam source at a water source or steam source temperature; heating the water source or the steam source to produce a steam stream at a steam stream temperature; providing a sweep gas at a sweep gas temperature; feeding the steam stream and the sweep gas to the SOEC unit to produce an oxygen-containing stream and a hydrogen-containing stream; cooling the oxygen-containing stream to a temperature in the range of about 20°C to about 100°C, preferably about 40°C to about 60°C, more preferably about 44°C to about 55°C, and even more preferably about 50°C; and, after the cooling step, purifying the oxygen-containing stream to produce the purified oxygen-containing stream The present disclosure also relates a system for producing a purified oxygen-containing stream.

MEMBRANE ELECTRODE ASSEMBLY WITH GRADED GAS RECOMBINATION LAYER

NºPublicación:  US2025250694A1 07/08/2025
Solicitante: 
GM GLOBAL TECH OPERATIONS LLC [US]
GM Global Technology Operations LLC
US_2025250694_PA

Resumen de: US2025250694A1

A membrane electrode assembly includes a cathode portion disposed on one end and an anode portion disposed on an opposite end from the cathode portion. The membrane electrode assembly also includes a cathode ionomer layer disposed adjacent the cathode portion and an anode ionomer layer disposed adjacent the anode portion. Further, the membrane electrode assembly may include one or more support layers disposed between the cathode ionomer layer and the anode ionomer layer. Additionally, the anode ionomer layer includes a plurality of gas recombination catalysts in a graded dispersion such that a portion of the anode ionomer layer disposed closer to the anode portion includes a higher concentration of gas recombination catalysts than a portion of the anode ionomer layer disposed closer to the cathode portion.

MODULAR-STACKABLE-LONG DURATION STORAGE THROUGH HYDROGEN PRODUCTION

NºPublicación:  US2025250696A1 07/08/2025
Solicitante: 
EXOWATT INC [US]
Exowatt, Inc

Resumen de: US2025250696A1

Hydrogen is produced using high temperature heat from a progressive heat collection system that utilizes sun and air for collection and transfer of heat. Thermal energy from the sun superheats the water into steam and also powers a Stirling engine based electrical generator for operating a high temperature steam electrolyzer.

REACTOR WITH ADVANCED ARCHITECTURE FOR THE ELECTROCHEMICAL REACTION OF CO2, CO AND OTHER CHEMICAL COMPOUNDS

NºPublicación:  US2025250695A1 07/08/2025
Solicitante: 
TWELVE BENEFIT CORP [US]
Twelve Benefit Corporation
CA_3238869_A1

Resumen de: US2025250695A1

A platform technology that uses a novel membrane electrode assembly, including a cathode layer, an anode layer, a membrane layer arranged between the cathode layer and the anode layer, the membrane conductively connecting the cathode layer and the anode layer, in a COx reduction reactor has been developed. The reactor can be used to synthesize a broad range of carbon-based compounds from carbon dioxide and other gases containing carbon.

USE OF OXYHYDROGEN MICROORGANISMS FOR NONPHOTOSYNTHETIC CARBON CAPTURE AND CONVERSION OF INORGANIC AND/OR Cl CARBON SOURCES INTO USEFUL ORGANIC COMPOUNDS

Nº publicación: US2025250594A1 07/08/2025

Solicitante:

KIVERDI INC [US]
Kiverdi, Inc

Resumen de: US2025250594A1

Compositions and methods for a hybrid biological and chemical process that captures and converts carbon dioxide and/or other forms of inorganic carbon and/or CI carbon sources including but not limited to carbon monoxide, methane, methanol, formate, or formic acid, and/or mixtures containing CI chemicals including but not limited to various syngas compositions, into organic chemicals including biofuels or other valuable biomass, chemical, industrial, or pharmaceutical products are provided. The present invention, in certain embodiments, fixes inorganic carbon or CI carbon sources into longer carbon chain organic chemicals by utilizing microorganisms capable of performing the oxyhydrogen reaction and the autotrophic fixation of CO2 in one or more steps of the process.

traducir