Resumen de: DE102024206670A1
Die vorgestellte Erfindung betrifft ein Verfahren (100) zum Bestimmen eines Brennwerts eines in einem Anodensubsystem (203) eines Festoxidbrennstoffzellensystems (200) strömenden Brenngasvolumenstroms,wobei das Verfahren (100) umfasst:- Ändern (101) des Brenngasvolumenstroms gemäß einer vorgegebenen Kennlinie in einem vorgegebenen Zeitbereich, während ein Zellstapel (201) des Festoxidbrennstoffzellensystems (200) bei einem Betriebspunkt betrieben wird, der zu einem konstanten durch den Zellstapel (201) bereitgestellten elektrischen Strom führt,- Ermitteln (103) eines Schätzers des Brenngasvolumenstroms, über den vorgegebenen Zeitbereich hinweg,- Ermitteln (105) einer Wasserstoffkonzentration in dem Brenngasvolumenstrom anhand der durch die Lambdasonde (205) gemessenen Werte und- Ermitteln (107) mindestens eines Kennwerts, der den Brenngasvolumenstrom quantifiziert, anhand der ermittelten Wasserstoffkonzentration,wobei der Schätzer unter Verwendung des Kennwerts aktualisiert und zum Einstellen des Festoxidbrennstoffzellensystems (200) verwendet wird.
Resumen de: AU2024296272A1
The invention relates to the use of a heat-transfer fluid based on an aliphatic diester for the indirect cooling of electronic components.
Resumen de: AU2024289871A1
Methods and systems of the present disclosure are generally directed to switching operation of one or more electrochemical cells of an electrowinning plant between a charge mode and a discharge mode. In the charge mode, the one or more electrochemical cells may reduce metal from an oxidized state to a zero valence state with a first electric current applied across the one or more electrochemical cells. In the discharge mode, the one or more electrochemical cells may oxidize at least some of the metal from the zero valence state to the oxidized state to generate a second electric current, oppositely charged relative to the first electric current, to generate electricity (e.g., for delivery to the grid). Operation of the one or more electrochemical cells of the electrowinning plant may be selectively changed between the charge mode and the discharge mode based on, for example, availability/cost of electricity from the grid.
Resumen de: US20260022011A1
Disclosed is a method of: providing a hydrogenated sp2 carbon allotrope, and releasing hydrogen gas from the carbon allotrope. The method may be used an apparatus having: a vessel for containing the hydrogenated sp2 carbon allotrope, a fuel cell capable of using hydrogen gas a fuel, and a tube for transporting hydrogen gas from the vessel to the fuel cell. The carbon allotrope may be made by: providing a mixture of an sp2 carbon allotrope and liquid ammonia, adding an alkali metal to the mixture, and sonicating the mixture to form a hydrogenated form of the carbon allotrope. The hydrogenated carbon can be at least 3.5 wt % hydrogen covalently bound to the carbon.
Resumen de: US20260021451A1
Disclosed are an anion-exchange membrane and a manufacturing method therefor. The anion-exchange membrane may include: a porous polymer support composed of a membrane structure; and an anion-exchange polymer, wherein the anion-exchange polymer may be present on a surface and in pores of the porous polymer support, anion-exchange groups of the anion-exchange polymer may be uniformly distributed on the surface and in the pores of the porous polymer support, and the anion-exchange polymer may be a crosslinked product of a composition including a crosslinkable monomer represented by Formula 1:wherein X− is as disclosed in the specification.
Resumen de: WO2026003390A1
The present invention relates to a complex electrochemical cell (complex membrane electrode assembly (MEA)) that integrates one or more individual electrochemical cells made of ceramic and metal materials and connected to each other (for example, in parallel and/or series arrangements), so that electrical losses are minimised and strategies for controlling the cell which makes the operation more flexible are allowed, maintaining maximum energy efficiency and adaptability to external requirements of the operation.
Resumen de: JP2026010269A
【課題】エンド部材とガス通路部材との接続部分が損傷することを抑制する。【解決手段】電気化学反応セルスタックは、空気極と、電解質層と、燃料極とを備える単セルを備え、単セルの周囲にガスを供給するためのガス流路を有する反応ブロックと、反応ブロックの外側に配されるエンド部材と、ガス流路に連通するガス通路を有し、エンド部材に接続されるガス通路部材と、ガス通路部材を保持する保持部を備える補強部材と、エンド部材と補強部材とを接合する1つまたは複数の接合部と、を備え、少なくとも1つの接合部の長さが、エンド部材の厚さよりも大きい。【選択図】図6
Resumen de: JP2026010572A
【課題】簡潔化した構成で安定的な発電を行う。【解決手段】発電ユニット10は燃料電池15と脱水素部16と改質器17と熱交換器18とを有する。脱水素部17は燃料電池15の燃料となる水素を有機ハイドライドの脱水素化反応により生成する。改質器17は脱水素部から送出され且つ水素とともに供給される有機化合物を改質することにより燃料電池15の燃料となる水素を生成する。熱交換器18は燃料電池15に供給する酸素含有ガスを加熱する。第1の流体が流れる流路fpにおいて脱水素部16と改質部17と熱交換器18の中で熱交換器18が最も下流に位置する。第1の流体は燃料電池15において発生する熱を有する。【選択図】図1
Resumen de: JP2026010570A
【課題】簡潔化した構成で安定的な発電を行う。【解決手段】発電ユニット10は発電部14と脱水素部15と改質部16と第1の筐体17とを有する。発電部14は燃料電池を有する。脱水素部15は燃料電池の燃料となる水素を有機ハイドライドの脱水素化反応により生成する。改質部16は脱水素部15から送出され水素とともに供給される有機化合物を改質することにより燃料電池の燃料となる水素を生成する。第1の筐体17は発電部14と脱水素部15と改質部16とを収容する。脱水素部15及び改質部16は発電部14の表面に対してずれて位置する。【選択図】図1
Resumen de: JP2026010567A
【課題】燃料電池ユニットを改善する。【解決手段】燃料電池ユニットは、燃料電池ユニットの外側を覆うカバーと、生成部と、発電部と、第1熱交換部とを一体的に備える。生成部は、有機ハイドライドから水素及び脱水素化物を生成する。発電部は、燃料電池を含み、ケースに収容される。第1熱交換部は、発電部に供給される第1流体と生成部から出力される第2流体との間で熱交換を行う。【選択図】図1
Resumen de: US20260018630A1
A membrane stack for an air humidifier of a fuel cell for humidifying a dry supply air flow of the fuel cell via a humid exhaust air flow of the fuel cell may include a plurality of membranes and a plurality of spacers. The membranes may be permeable to humidity and impermeable to air. The membranes may be arranged one above another in a stacking direction such that at least a subset of the membranes each separate a respective supply air path of a plurality of supply air paths, which each connect a supply air inlet to a supply air outlet, from a respective exhaust air path of a plurality of exhaust air paths, which each connect an exhaust air inlet to an exhaust air outlet. The spacers may each be arranged in the stacking direction between two directly adjacent membranes and in one of the exhaust air paths.
Resumen de: WO2024145141A1
An ionically conductive thin film composite (TFC) membrane is described. The low cost, high performance TFC membrane comprises a first micropous support membrane, a hydrophilic ionomeric polymer coating layer on a first surface of the microporous support membrane, and a second microporous support membrane on the surface of the hydrophilic ionomeric polymer coating layer opposite the first microporous support membrane. The hydrophilic ionomeric polymer coating layer is ionically conductive. The ionomeric polymer can also be present in the micropores of the first microporous support membrane. Methods of making the TFC membranes and redox flow battery systems incorporating the TFC membranes are also described.
Resumen de: JP2026010569A
【課題】燃料電池ユニットのエネルギー効率を向上させることができる。【解決手段】燃料電池ユニットは、燃料電池ユニットの外側を覆うカバーと、燃料電池を含む発電部と、第1流路と、第2流路と、第3流路とを備える。第1流路は、発電部で生じる第1流体を燃料電池ユニットの外部に排出する。第2流路は、発電部に第2流体を供給する。第3流路は、第3流体を燃料電池ユニットに供給し、燃料電池ユニットにおいて第3流体から生成される第4流体をカバーの外側に供給する。第1流路、第2流路及び第3流路のそれぞれの間で熱交換が行われるように構成される。【選択図】図1
Resumen de: US20260022800A1
A hydrogen supply system includes a detachable hydrogen tank, a hydrogen consumption apparatus that consumes hydrogen in the hydrogen tank, and a control device. The hydrogen consumption apparatus includes a detachment and attachment mechanism that detaches the hydrogen tank from the hydrogen consumption apparatus and attaches the hydrogen tank to the hydrogen consumption apparatus. The detachment and attachment mechanism includes a motor that controls detachment and attachment of the hydrogen tank from and to the hydrogen consumption apparatus. When a torque value of the motor exceeds a threshold during the control of the detachment and attachment of the hydrogen tank from and to the hydrogen consumption apparatus, the control device returns the hydrogen tank to a position where a moving process in which the threshold being exceeded is detected is started.
Resumen de: US20260022802A1
A hydrogen supply system including: a plurality of hydrogen tanks that is attachable and detachable; a hydrogen consumption device that consumes hydrogen of the hydrogen tanks; and a control device is provided. The hydrogen consumption device includes an attaching-detaching mechanism including a plurality of motors that controls attaching and detaching of the hydrogen tanks with respect to the hydrogen consumption device, the motors corresponding to the attaching and detaching of the respective hydrogen tanks. The control device disposes, based on a temperature of each of the motors, a hydrogen tank of the hydrogen tanks to a hydrogen supply start position at which the hydrogen tank and the hydrogen consumption device are connected in a state in which the hydrogen tank is allowed to supply hydrogen to the hydrogen consumption device, or disposes the hydrogen tank to a hydrogen supply standby position.
Resumen de: US20260022481A1
Composite anion exchange membranes are described. The composite anion exchange membranes comprise an anion exchange polymer containing a hydrogen recombination catalyst dispersed in the anion exchange polymer. The anion exchange membrane may also include a radical scavenger. The anion exchange polymer comprises a plurality of repeating units of formula (I)Catalyst coated membranes and membrane electrode assemblies made using the composite anion exchange membranes are also described.
Resumen de: US20260022474A1
Hybrid electrocatalyst layers for use in an electrochemical cell and processes for making the same are described. The hybrid electrocatalyst layers include at least one ion-conducting layer and at least one nonionic conductive catalyst layer. The processes for making the hybrid electrocatalyst layers include a sintering step, which provides greater durability of the hybrid electrocatalyst layers.
Resumen de: US20260022470A1
A method for producing hydrogen by means of water electrolysis, in which a direct electrolysis current is fed to one or more electrolysis units at least in a first operating mode, wherein the direct electrolysis current is supplied from a mains current using a current conversion arrangement, wherein the mains current is an alternating current, wherein the current conversion arrangement, comprises one or more first synchronous electric machines which are operable as motors and one or more second synchronous electric machines which are operable as generators, wherein the one or more first synchronous electric machines is/are operated using the mains current, wherein the one or more second synchronous electric machines is/are driven using the one or more first synchronous electric machines, and wherein the direct electrolysis current is supplied using the one or more second synchronous electric machines. The present invention also relates to a corresponding plant.
Resumen de: DE102024206824A1
Eine Verfahren zum Bestimmen der Wasserstoffkonzentration (CH2) in einer Anode (6) wenigstens einer Brennstoffzelle (4) umfasst: (A) mehrfaches Messen des von der wenigstens einen Brennstoffzelle (4) abgegebenen elektrischen Stromes (i) und Bereitstellen von mehreren Strom-Messwerten (i(t)); (B) mehrfaches Messen der Wasserstoffkonzentration (kH2) in einem Gasgemisch (26, 28), das aus einem Spülventil (20) ausströmt, das an einem Ausgang (9) der wenigstens einen Brennstoffzelle (20) angeordnet ist, und Bereitstellen von mehreren Wasserstoffkonzentration-Messwerten (kH2(t)); (C) Berechnen von relativen Strom-Messwerte (irel(t)) aus den gemessenen Strom-Messwerten (i(t)) und Berechnen von relativen Wasserstoffkonzentration-Messwerten (krel(t)) aus den gemessenen Wasserstoffkonzentration-Messwerten (kH2(t)); (D) Bestimmen von skalierten Strom-Messwerten (iscal(t)) durch Multiplizieren der relativen Strom-Messwerte (irel(t)) mit einem Strom-Skalierungsfaktor (gi) und Bestimmen von skalierten Wasserstoffkonzentration-Messwerten (kscal(t)) durch Multiplizieren der relative Wasserstoffkonzentration-Messwerte (krel(t)) mit einem Wasserstoffkonzentration-Skalierungsfaktor (gH2); (E) Bilden von Differenzwerten (diff(t)) aus den skalierten Strom-Messwerten (iscal(t)) und den skalierten Wasserstoffkonzentration-Messwerten (kscal(t)); (F) Integrieren oder Summieren der Differenzwerte (diff(t)) über die Zeit (t); und (G) Addieren eines Bias-Wertes (GH2) zu dem Integral D(T) oder zu der
Resumen de: DE102024206667A1
Die vorgestellte Erfindung betrifft ein Verfahren (100) zum Bestimmen von Eigenschaften eines in einem Anodensubsystem (203) eines Festoxidbrennstoffzellensystems (200) strömenden Brenngasvolumenstroms, wobei das Verfahren (100) umfasst:- Ändern (101) des Brenngasvolumenstroms gemäß einer vorgegebenen Kennlinie in einem vorgegebenen Zeitbereich, während ein Zellstapel (201) des Festoxidbrennstoffzellensystems (200) bei einer Anzahl Betriebspunkte betrieben wird, die zu einem konstanten durch den Zellstapel (201) bereitgestellten elektrischen Strom führt,- Messen (103) des Brenngasvolumenstroms mittels einer an dem Festoxidbrennstoffzellensystem angeordneten Lambdasonde (205) über den vorgegebenen Zeitbereich hinweg,- Ermitteln (105) einer Größe, die den Brenngasvolumenstrom quantifiziert, anhand der durch die Lambdasonde (205) gemessenen Werte und- Ermitteln (107) mindestens eines Kennwerts, der mindestens eine Eigenschaft des Brenngasvolumenstroms beschreibt, anhand des ermittelten Brenngasvolumenstroms,wobei die mindestens eine Eigenschaft des Brenngasvolumenstroms einen Brennwert des Brenngasvolumenstroms umfasst.
Resumen de: DE102024206690A1
Die Erfindung betrifft eine Anlage (10) zur Umwandlung eines Brennstoffs in elektrische Leistung und Wärme, aufweisend wenigstens ein Brennstoffaufbereitungssystem (12) mit einem Entschwefelungsfilter, ein Brennstoffzellensystem (14), wobei strömungstechnisch zwischen dem Brennstoffaufbereitungssystem (12) und dem Brennstoffzellensystem (14) eine Sensoreinheit (20) zum Analysieren des Brennstoffs angeordnet ist. Es wird vorgeschlagen, dass die Sensoreinheit (20) einen Metalloxidsensor aufweist, welcher zum Detektieren von Schwefel im Brennstoff eingerichtet ist.
Resumen de: US20260024779A1
A membrane electrode assembly includes a solid polymer electrolyte membrane, an anode catalyst layer disposed on a first surface of the solid polymer electrolyte membrane, and a cathode catalyst layer disposed on a second surface of the solid polymer electrolyte membrane, the membrane electrode assembly includes a metal ion selected from a cerium ion and a manganese ion; and a host compound capable of forming a clathrate compound together with the metal ion. The cathode catalyst layer contains an electrode catalyst, and an ionomer, the electrode catalyst is a metal supported catalyst containing a catalyst metal, and a support supporting the catalyst metal, and an ionomer coverage ratio of the catalyst metal in the cathode catalyst layer is 40% or less.
Resumen de: US20260024789A1
An apparatus and a method are for determining air distribution performance of a fuel cell system. The apparatus includes: an air cut off valve connected to a downstream side of an air compressor and supplied with first air discharged from the air compressor; a first fuel cell stack connected to the air cut off valve through a first air path and supplied with second air through the first air path; a second fuel cell stack connected to the air cut off valve through a second air path and supplied with third air through the second air path; and a controller. The controller determines a ratio between a flow rate of the third air and a flow rate of the second air based on absolute humidity values of the first, second, and the third air, and determines air distribution performance between the second fuel cell stack and the first fuel cell stack based on the ratio.
Resumen de: US20260024794A1
The present invention relates to a solid oxide cell (SOC) stack made of single repeating units (SRU), each of which comprising: —a ceramic cell with a corrugated membrane and a sealing frame with gas distribution holes and channels, and—a flat metallic interconnect.
Nº publicación: US20260024793A1 22/01/2026
Solicitante:
TOYOTA JIDOSHA KK [JP]
TOYOTA JIDOSHA KABUSHIKI KAISHA
Resumen de: US20260024793A1
The present disclosure provides a membrane electrode assembly having excellent durability and performance. In the embodiment, the membrane electrode assembly includes metal ions selected from cerium ions and manganese ions, and a crown ether compound capable of forming an inclusion compound with the metal ions or a salt thereof. The cathode catalyst layer includes an electrode catalyst and an electrolyte. The electrode catalyst is a metal-supported carrier in which metal particles having catalytic activity are supported on a carrier having pores. An external-internal surface area ratio is 1.20 or less. An external-internal particle count ratio is 0.70 or less.